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Abstract
Bearing steels are complex materials composed of an iron matrix and a well
defined and precise amount of several alloying elements. In order to improve
sustainability and circularity, there is a tendency to increase the utilisation of
scrap material for their production. The variability of the composition of scrap
material has a direct impact on the properties of the final steels: There is less
control on their composition due to the possible presence of larger amounts of
tramp and alloying elements. One way to study the effect of tramp elements
is by using universal machine learning interatomic potentials. These types
of potential render the investigation of multi-element systems possible. They
permit the study of interactions between iron atoms in the matrix and multiple
concurrent tramp and alloying elements, a feature that is currently not available
in classical potentials. In this work, we present a benchmark of four state-of-
the-art universal machine learning interatomic potentials (Crystal Hamiltonian
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Graph Neural Network (Deng et al 2023 Nat. Mach. Intell. 5 1031–41) (v0.2.0
and v0.3.0), Materials 3-body Graph Network (Chen and Ping Ong 2022 Nat.
Comput. Sci. 2 718–28), Multiple Atomic Cluster Expansion (Batatia et al
2022 Advances in Neural Information Processing Systems vol 35 pp 11423–
36)) and SevenNet (Park et al 2024 J. Chem. Theory Comput. 20 4857–68), and
study their applicability to the simulation of systems relevant to steels. For pure
Fe, all potentials accurately predict the equilibrium lattice parameter, but the
accuracy varies for other properties. For most solute–solute and solute–vacancy
interactions all interatomic potentials tend to capture the general trends though
there is a disparity in the predicted magnitudes. While currently ‘off-the-shelf’
universal machine learning interatomic potentials fail to predict some key prop-
erties, some of them show significant potential to serve as starting point for
further training and refinement.

Keywords: interatomic potential, machine learning, steel modelling,
solute atoms, diffusion, point defects

1. Introduction

The steel industry is transitioning towards a more sustainable and circular economy, emphas-
ising increased scrap utilisation and inclusion of lower-quality scrap in steel production. This
shift poses significant challenges for controlling the composition of final steel products and
requires the development of steels that are more robust to compositional variability.

To understand the impact of various elements on steel processability and final properties,
atomic-scale simulations offer invaluable insights. These simulations allow for the investiga-
tion of fundamental phenomena that govern macroscopic material behaviour. While ab-initio
methods like density functional theory (DFT) are suitable for studying phenomena in small
systems, larger-scale phenomena, such as dislocations and their interactions, require more
extensive simulations. Recent advancements in universal machine learning potentials have
emerged as promising candidates for large-scale atomic simulations.

Universal machine learning interatomic potentials (MLIPs) are interatomic potentials
designed to reproduce the interactions of systems containing atoms from any combination
of elements of the periodic table. Trained on extensive sets of DFT data, these potentials have
demonstrated remarkable accuracy in reproducing energies and forces of test datasets, achiev-
ing average energy errors below 0.05 eV atom−1 [1]. Although not always the case, many
universal MLIPs are now open-source, making them accessible for broader use and testing.

Applications of universal potentials extend to materials discovery, serving as preliminary
filters to assess the stability of candidate materials before performing specific DFT calcula-
tions and experimental verifications. Their performance in reproducing ab-initio results for
equations of state, atomic and lattice relaxations, formation energies, and vibrational proper-
ties has been previously studied [2]. Their performance has also been recently reviewed for
free surfaces [3].

However, the suitability of these potentials for simulating systems containing elements and
processes relevant to steels remains underexplored. This study aims to address this gap by
investigating the applicability of universal MLIPs for steel-related simulations.
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2. Methods

In order to test the suitability of universal MLIPs for the simulation of systems relevant to
steels, we prepared a number of test configurations, calculated some of their properties, and
compared the results with DFT values found in the literature. In this section, we describe the
details of the simulations performed.

The universal MLIPs were chosen based on their open source availability and their ranking
on the Matbench Discovery leaderboard [1]. We consider four state-of-the-art pre-trained uni-
versal MLIPs, namely Crystal Hamiltonian Graph Neural Network [4] (CHGNet), Materials
3-body Graph Network [5] (M3GNet), Multiple Atomic Cluster Expansion [6] (MACE) and
Scalable EquiVariance Enabled Neural Network [7] (SevenNet).

CHGNet [4] is a graph neural network-based machine-learning interatomic potential
designed to model the universal potential energy surface. The architecture of the CHGNet
model takes as input a crystal structure with unknown atomic charge and predicts energy, force,
stress, and magnetic moments (although it is important to note that it is trained on, and can
only predict, the absolute values of the magnetic moments). It employs atom and bond graphs
to represent pairwise bond and angle information, which are processed through basis expan-
sions and embedding layers to create features for atoms, bonds, and angles. These features are
updated through interaction blocks, and properties are predicted at output layers using fully
connected layers. The interaction blocks allow atoms, bonds, and angles to share and update
information, while the atom convolution layer calculates neighbouring atom and bond inform-
ation through weighted message passing. One of the main differences between CHGNet and
other universal potentials is the incorporation of magnetic moments, which carry information
about both local ionic environments and charge distribution. For CHGNet, we consider separ-
ately two published versions (v0.2.0 and v0.3.0).

M3GNet [5] is a universal MLIP based on graph neural networks with three-body interac-
tions. This model combines the many-body features of traditional interatomic potentials with
flexible graph-based material representations. The three-body angular interactions are expan-
ded by a complete and orthogonal spherical Bessel function and spherical harmonics basis
set. The model architecture begins with a position-included graph, followed by featurisation,
the main block, and a readout module that outputs energy, force, and stress. Featurisation
includes a graph featuriser and amany-body computationmodule. The graph featuriser embeds
atomic numbers into a continuous feature space and expands pair-bond distances into a basis
set. The many-body computation module calculates interaction indices and angles. The main
block has two steps: many-body to bond, which calculates new bond information, and stand-
ard graph convolution, which updates bond, atom, and state information. In the readout stage,
atom information is passed to a gated MLIP to obtain atomic energy, which sums to the total
energy, with its derivatives providing force and stress outputs. In the present work, we use
version M3GNet-MP-2021.2.8-PES.

The MACE architecture integrates equivariant message passing with many-body mes-
sages. It retains components of equivariant graph neural networks, such as element embed-
ding with tensor decomposition and higher-order equivariant messages via tensor product
operations. It uses 4-body order equivariant features in each layer, requiring two layers of
message passing, and non-linear activations in the radial basis and final readout layer [6].
In the present work, we use their pretrained foundational model, MACE-MP-0 (Large,
MACE_MPtrj_2022.9.model) [8].

SevenNet [7] is a package that implements an efficient parallelisation scheme compatible
with graph neural network interatomic potentials. The neural network architecture used is
identical to that of NequIP [9], it is programmed using PyTorch [10] and it leverages the
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e3nn [11] library to ensure equivariance in mathematical operations. Here we use the pre-
trained SevenNet-o model, version 11July2024.

Calculations were performed using the Atomic Simulation Environment (ASE) [12], where
the potentials were loaded as calculator objects. All relaxations were carried out using the
ABC-FIRE minimisation method [13–15], with the convergence criterion that the force on all
individual atoms should be less than 1meVÅ−1 [16] while for the calculation of the stiffness
tensor elements a stricter criterion was used, namely 0.1meVÅ−1 [17].

2.1. Pure iron

The performance of the selected universalMLIPs was initially assessed in iron (Fe) systems, as
Fe is the main constituent element in steels. This evaluation provides a baseline understanding
of their ability to accurately describe Fe–Fe interactions, a crucial aspect of simulating steel
alloy properties. We focus on the following properties: lattice parameter, vacancy formation
energy, surface energies, and elastic properties, and, for the CHGNet potentials only, some
local magnetic moment properties.

The lattice parameter (aFe0 ) is calculated on cubic supercells with an underlying body-
centred cubic (BCC) lattice of various sizes, ranging from (1× 1× 1) to (5× 5× 5) unit cells
to check the robustness of the potentials. The supercells were structurally relaxed, allowing the
atomic positions and the box size to change while constraining the box to remain orthogonal.
The relaxed system of size (4× 4× 4) unit cells was taken as input for the calculation of the
vacancy formation energy (Evf ), using the following equation:

(Evf ) = E [Fen−1□]− n− 1
n

E [Fen] (1)

where E[Fen−1□] is the total energy of a system containing (n− 1) Fe atoms in a BCC lattice
and one vacancy, and E[Fen] is the energy of a system containing a perfect BCC Fe crystal
with n atoms.

The relaxed energies of the (111), (110) and (100) surfaces on BCC Fe are also evaluated.
The surfaces are generated in orthogonal supercells using the equilibrium lattice parameter
previously calculated for each potential. The dimensions of the supercells are (4× 4× 20)
repetitive units in the initial unrelaxed cell. The surface normal directions are [111], [110] and
[100] along the z direction of the simulation box. A 10 Å vacuum is inserted in the z direction
to avoid interactions between opposing surfaces, due to periodicity. The energy of the system is
minimised by allowing the movement of the atoms while keeping the dimensions and angles of
the simulation box fixed. The energy of a surface defined by the indices ijk (Eijks ) is calculated
as follows:

Eijks =
E
[
Feijkn

]
−E [Fen]

2Aijk
(2)

where E[Feijkn ] is the total energy of a system containing free surfaces with normal [ijk]; Aijk is
the area of the free surface.

For the two versions of CHGNet, we also extracted themagnetic moment of an atom located
at the top layer of the surface.

The components (Cij) of the stiffness tensor (C) were calculated using the stress–strain
method [18, 19]. It is based on Hooke’s law: σ = Cε, where C is obtained from the computed
stress tensor σ that results from the imposed Green–Lagrange strain tensor ε. The method
involves four steps: (1) structurally relaxing the system, (2) applying six strain tensors with
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four magnitudes each (−0.01, −0.005, 0.005 and 0.01), (3) relaxing ionic positions while
maintaining the applied strain and computing the resulting stresses, and (4) calculating the
stiffness tensor components by fitting Hooke’s law via least squares.

The cubic elastic stability criteria are calculated from the components of the stiffness tensor:
the bulk modulus B= (C11 + 2C12)/3, and the shear moduli C44 and C ′ = (C11 −C12)/2.

2.2. Carbon in iron

Carbon (C) is one of the most important interstitial alloying elements in steels, playing a cru-
cial role in determining their properties and behaviour. The amount of C in steel can vary
widely, and its effects on steel properties are complex and multifaceted, depending on factors
such as the overall composition of the steel, processing history, and thermal and mechanical
treatments applied. Carbon is also one of the most frequent foreign interstitial atoms in the
Fe matrix, along with nitrogen atoms. Even a very small amount of C in interstitial positions
can drastically influence steel properties through strong interactions with lattice defects. The
interaction of C with dislocations and/or substitutional atoms significantly affects the yield
stress and subsequent mechanical properties of the material.

We study the behaviour of C within BCC Fe by calculating the binding energy of various
configurations where C atoms, and/or vacancies, are present in a BCC Fe lattice. The config-
urations correspond to those previously studied in [20–22], namely configurations with: one
vacancy and one C atom, two vacancies and one C atom, two C atoms, and one vacancy and
a C dimer, see figure 1. We put special emphasis on the configurations with one vacancy and
a C dimer, since DFT calculations have shown that vacancies in both low- and high-carbon
steels bind strongly with a carbon dimer [22, 23]. The binding energies, Eb, are calculated as
follows,

Eb = E [Fen−p□p] + q(E [FenC])− q(E [Fen])−E [Fen−p□pCq] , (3)

where E[Fen−p□p] is the total energy of a system containing (n− p) Fe atoms and p vacancies,
E[FenC] the energy of a system containing n Fe atoms and one interstitial C atom, E[Fen]
the energy of a system containing a perfect Fe crystal with n atoms, and E[Fen−p□pCq] is
the total energy of the system of interest, containing (n− p) Fe atoms, p vacancies and q C
atoms. Here and elsewhere, positive values of Eb indicate attractive interactions. In addition
the energy of migration of C between octahedral interstitial positions in BCC Fe is calculated.
For the systems containing a carbon dimer and a vacancy (configurations j, k, l and m), we
also calculate relative energies between configurations using the following notation:∆Er−s =
Erb −Esb is the energy difference between configurations r and s.

All calculations containing C and/or vacancies are performed using as a base a BCC Fe
system of size (4× 4× 4)aFe0 , where the C atoms are inserted as interstitials, and/or where
Fe atoms are removed to generate vacancies. The total energies are calculated by relaxing the
atomic positions and box dimensions while constraining the box to remain orthogonal.

2.3. Solutes and vacancies

Substitutional solutes play an important role in determining the microstructure and properties
of steels. These solutes interact with the iron lattice, with each other [24], with interstitial ele-
ments such as carbon [25, 26], and with lattice defects [27], thereby influencing the behaviour
of the material. The interactions between substitutional solutes are known to enhance solid
solution strengthening [28–31]. Solutes can exhibit short-range order also, where they tend
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Figure 1. Configurations containing C and/or vacancies within a BCC Fe lattice used
for the assessment of the potentials.

to cluster or segregate in specific arrangements within the lattice, affecting the mechanical
properties [32–34]. Electronic interactions between substitutional solutes and the iron lattice
can influence the electronic structure and properties, such as corrosion resistance [35, 36].
Furthermore, lattice distortion caused by substitutional solutes affects strength, ductility, and
toughness [37–39]. The thermodynamic stability of various phases in steel, such as austenite,
ferrite, and martensite, and the microstructure is influenced by substitutional solutes [40–42].

Interactions between vacancies and solute atoms in steels play a role in diffusion-mediated
processes, such as ordering and decomposition, which occur in alloys during heat treatment
and irradiation. By affecting the formation of precipitates, grain growth, and microstructure,
vacancy-solute interactions can alter the strength, hardness, ductility, and corrosion resistance
of steel. In addition, they can influence the movement and interaction of dislocations, which
additionally has an effect on the fatigue behaviour. A thorough understanding of vacancy-
solute interactions is crucial for optimising steel properties and behaviour, and for developing
new steel alloys with improved performance and reliability.
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Figure 2. The positions of the first to fifth nearest neighbours of the solute M in the
body-centred cubic (BCC) lattice. Site numbering as in [24] and [43].

2.3.1. Solute–solute interactions. We test the performance of the various potentials by cal-
culating the binding energy of pairs of substitutional solute atoms in BCC Fe. We consider
five distinct configurations, namely the first five nearest neighbour separations, see figure 2.

The solute–solute interactions, Ess
b , are quantified using the following equation,

Ess
b = 2E [Fen−1M]−E [Fen]−E [Fen−2M2] , (4)

where E[Fen−1M] is the total energy of a system containing (n− 1) Fe atoms and one sub-
stitutional atom of element M; E[Fen] is the energy of a system containing (n) Fe atoms, and
E[Fen−2M2] is the energy of a system containing (n− 2) Fe atoms and two substitutional M
atoms.

The total energies E[Fen−1M], E[Fen], and E[Fen−2M2] are calculated in cubic supercells of
size (4× 4× 4)aFe0 (for a value of n= 128 atoms), where aFe0 is the lattice parameter of BCC
Fe. As before, the supercells are structurally relaxed, allowing the atomic positions and the
box volume and shape to change while constraining the box to remain orthogonal.

2.3.2. Solute–vacancy interactions. Analogous to the previous case of solute–solute inter-
actions within BCCFe, the solute–vacancy interactions are calculated for the first five neighbor
distances, see figure 2. The solute–vacancy binding energy, Esv

b , is defined as,

Esv
b = E [Fen−1□] +E [Fen−1M]−E [Fen]−E [Fen−2M□] (5)

where E[Fen], E[Fen−1□], and E[Fen−1M] are defined as before, and E[Fen−2M□] is the energy
of system containing (n− 2) Fe atoms, one M atom, and one vacancy. The supercell size and
the relaxation procedure are identical to those used for the calculation of the solute–solute
interactions.

2.3.3. Solute migration. The migration energy barrier of a M atom in a Fe BCC matrix
(EM

m ) is calculated using the string method [44–47] as implemented in the ASE software. A
(4× 4× 4)aFe0 supercell is used as before. The migration path is shown in figure 3. The gen-
erated initial and final configurations are then structurally relaxed, allowing relaxation of the
atomic positions only. The string method is applied using seven images, generated using a
linear interpolation between the initial and final images.
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Figure 3. Route for a substitutional atom of element M (in grey) to migrate towards a
vacancy (depicted as a white square) in a BCC lattice of Fe along a ⟨111⟩ direction.

3. Results

3.1. Pure iron

Results of the calculations performed in systems containing exclusively Fe atoms are presen-
ted in table 1, together with some literature values from DFT calculations for reference. All
the universal MLIP potentials are able to reproduce the lattice parameter (aFe0 ) of BCC Fe to
within 1% of the Materials Project target value [48]. The performance of the potentials for the
reproduction of the vacancy formation energy ((Evf )) is not good. If we take as a reference a
DFT calculated value of 1.95 eV [49], the closest values are given by MACE and SevenNet-o,
with values of 1.38 eV and 1.29 eV, which translate into errors of 29% and 34%, respectively.
The other potentials show larger errors, namely 57% (M3GNet), 58% CHGNet version v0.3.0
(abbreviated as CHG3), and 62% CHGNet version v0.2.0 (abbreviated as CHG2).

The migration energy is well reproduced by CHG2 and M3GNet, with values of 0.65 eV
and 0.66 eV, respectively. These two values agree with a DFT reference 0.65 eV [49]. CHG3
presents the poorest performance, underestimating the migration energy with a value of 0.30
eV, less than half of the reference value.

Regarding the energy of the (100), (110) and (111) surfaces, all the potentials are able to
capture the trend present in DFT calculations: E(111)

s > E(100)
s > E(110)

s . The potential with the
lowest error is MACE, which underestimates by up to 17%. SevenNet-o, CHG3 and CHG2
produce higher errors, which go up to 50%. ForM3GNet, we notice that the surfaces (110) and
(111) are not stable: for (111), the surface atoms reconstruct, and for (110) a semi amorphous
region is formed close to the free surface.

The magnetic moments of bulk and the (111), (100) and (110) surfaces calculated with
CHG2 and CHG3 give low errors, the largest ones being in the order of 10 CHG2 gives rather
similar values for the three surfaces, while CHG3 gives similar values for µ(111) and µ(110). On
a positive note, both potentials coincide with the DFT predictions that the atoms in the (100)
surface have the highest magnetic moments.

The elastic properties are compared with the values from materials project database [48].
CHG2 has the least mean absolute average error for the elastic properties with a value of 20%
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Table 1. Calculated andDFT reference values of the lattice parameter (aFe0 ), vacancy formation energy (Evf ), migration energy (EFe
m ), surface energies

(E(100)
s ,E(110)

s ,E(111)
s ), bulk (µbulk) and surfacemagneticmoments (µ(111),µ(110),µ(100)), and elastic coefficients (B,C′, C44). The best predictions are

highlighted in bold for each property (except for the lattice parameter and the elastic coefficients). Fields labelled with “NC” indicate no convergence
after 105 iterations.

MLIPs DFT

CHG2 CHG3 M3GNet MACE SevenNet-o MPa [18] [50] [51] [52] [49] [53] [54] [43] [55]

aFe0 [Å] 2.849 2.847 2.839 2.859 2.846 2.86 2.84 2.863 2.836 2.869 2.855 2.84 2.831
(Evf ) [eV] 0.73 0.82 0.83 1.38 1.29 1.95 1.94 2.18
EFe
m [eV] 0.65 0.3 0.66 0.58 0.47 0.65 0.7
E(100)
s [Jm−2] 1.35 1.54 1.08 2.39 1.85 2.49 2.5 2.47 2.49 2.29
E(110)
s [Jm−2] 1.09 1.16 NC 2.03 1.25 2.44 2.45 2.37 2.27
E(111)
s [Jm−2] 1.59 1.72 NC 2.49 2.04 2.73 2.73 2.58 2.52

µbulk [µB] 2.35 2.44 2.64 2.18 2.2 2.32 2.31 2.21
µ(111) [µB] 2.5 2.54 2.81 2.84
µ(110) [µB] 2.5 2.52 2.59 2.6
µ(100) [µB] 2.56 2.7 2.95 2.94
B [GPa] 182 111 158 139 97 208 182 177 211
C′ [GPa] 55 −1 55 29 19 49.5 49 51 51
C44 [GPa] 55 96 63 120 110 89 97 101 125
a MP—Materials Project database [56].
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Figure 4. Comparison of C behaviour according to the considered universal potentials
and a DFT [25, 60]. (Left) Minimum energy paths for the migration of a carbon atom
between two octahedral sites in BCC Fe. (Right)∆Er−k where r refers to configurations
k, m, l and j. DFT data from [22]. The configurations are shown in figure 1.

followed by M3GNet with a value of 21%. However, the bulk modulus B is underestimated
by all models, the worst prediction being SevenNet-o with a value of 97GPa, about half of
the reference value. The results for C′ are comparable with DFT with an error of 10% for
CHG2 andM3GNet. Noteworthy of CHG3 is thatC ′ < 0, which violates one of themechanical
stability criteria [19, 57, 58]. Thereby making the application of CHG3 impractical for Fe-
rich systems. C44 is underestimated by CHG2 (38%) and byM3GNet (29%) while MACE and
SevenNet-o overestimate by similar percentages (35% and 24%, respectively).

3.2. Carbon in iron

The two interstitial positions in BCC Fe hold special significance for carbon: the octahedral
position is its lowest energy position while the tetrahedral position is the saddle point energy
configuration for a carbon atom along the diffusion path between octahedral positions. The
minimum energy path for a carbon atom between two octahedral sites within a BCC Fe lat-
tice is presented in figure 4(left). We obtain migration energy values of 0.52, 0.27, 0.35, 0.39
and 0.41 eV for CHG2, CHG3, M3GNet, MACE and SevenNet-o, respectively. All potentials
underestimate the migration energy predicted by DFT (0.83 [25], 0.865 [59], 0.875 eV [60]).
It is remarkable that the best (CHG2) and worst (CHG3) results are given by potentials of the
same type that, moreover, were trained with the same data.

In figure 4(right) we show the relative energies of the j, k, l and m configurations (see
figure 1) relative to the lowest energy state, configuration k (according to DFT [22]). In the
figure, configurations are ordered frommore favourable at left to less favourable at right, lower
energies representing more stable structures.

The potential that best reproduces the trend of the DFT energies (∆Ek−k <∆Em−k <
∆El−k <∆Ej−k) is SevenNet-o, although configuration m is metastable and transforms to
configuration l during relaxation. CHG2 partially follows the trend, but configurations m, l
and j converge to a single value, somewhere close to configuration l. M3GNet presents a sim-
ilar behaviour to CHG2, but the energy differences are larger with respect to DFT. The CHG3
and especially the MACE MLIPs completely fail to reproduce the DFT tendencies. Table 2
shows the binding energies of configurations a to m presented in figure 1.

When one vacancy and one carbon atom are present, all the potentials correctly favour
having the C atom at the nearest neighbour (a1) instead of at the second neighbour position
(a2) -except M3GNet that does not reach force convergence. For the case of two vacancies
at second-nearest neighbour positions and one carbon atom (configurations b), only MACE

10
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Table 2. Calculated and DFT reference binding energies (Eb) for configurations a to i
introduced in figure 1. The best predictions are highlighted in bold for each property. The
units are eV. Fields labelled with “NC” indicate no convergence after 105 iterations.

DFT [20] CHG2 CHG3 M3GNet MACE SevenNet-o

Ea1
b 0.47 0.30 0.09 NC 0.31 0.29
Ea2
b −0.01 −0.17 −0.16 −0.47 −0.15 −0.16

Eb1
b 0.68 0.02 0.05 −0.57 0.59 0.43
Eb2
b 0.47 −0.16 −0.09 0.15 0.11 0.13
Eb3
b 0.34 0.19 0.09 −0.02 0.36 0.43

Ec1
b 0.58 0.29 0.11 NC 0.38 0.38
Ec2
b 0.12 −0.23 −0.32 −0.48 0.01 0.02

Ed
b 0.16 0.04 0.01 0.06 0.07 0.06
Ee
b 0.13 0.05 −0.01 0.13 0.01 0.01
Ef
b −0.09 −0.06 −0.15 −0.02 −0.13 −0.18
Eg
b −0.09 0.05 −0.01 0.12 0.05 0.03
Eh
b −0.65 −0.63 −0.63 −0.23 −0.66 −0.54
Ei
b −1.67 −1.18 −0.01 −0.81 −1.14 −0.91

Ej
b 1.07 0.37 0.15 0.25 0.26 0.36
Ek
b 1.50 0.63 0.18 0.90 0.43 0.75
El
b 0.37 0.09 0.25 0.53 0.58
Em
b 0.37 0.18 0.25 0.53 0.58

correctly predicts configuration b3 to have the highest binding energy. None of the potentials is
able to capture the DFT trend Eb1

b > Eb2
b > Eb3

b . When the two vacancies are nearest neighbours
(configurations c), all the MLIPs favour c1. CHG2, CHG3 and M3GNet incorrectly produce
repulsive interactions for c2.

For the final cases (d to i), where two carbon atoms are present in bulk Fe, MACE,
SevenNet-o and CHG3 correctly predict configuration d to be the most favourable one.
However, none of the potentials are able to reproduce the trend of the binding energies as pre-
dicted by DFT. Considering the configurations a through i, i.e. excluding the poorly described
one vacancy—two C atom configurations, MACE most often agrees best with DFT and has
the smallest average absolute difference with the DFT values as well as the smallest average
difference with the DFT values squared. When all configurations, a through m, are considered
SevenNet-o becomes comparable to MACE. However, for all MLIPs performance for config-
urations j through m is very poor.

3.3. Solutes and vacancies

3.3.1. Solute–solute interactions. Calculations of the binding energies, as defined in
equation (4), for the solute–solute interactions are presented in figure 5. All the relaxations
reach energy convergence to within a tolerance of 1× 10−6 eV with less than 105 iterations,
except for two cases with M3GNet, namely for the elements W and Hf. We note that although
convergence in the total energy of the system is reached with a tolerance of 1× 10−6 eV, the
convergence criterion that the force on all individual atoms should be less than 1× 10−3 eV
Å−1 forces is never reached.
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Figure 5. Solute–solute interactions for transition metals in BCC Fe. The binding ener-
gies for the first to fifth-nearest neighbours are presented, as calculated with various
universal potentials. The DFT reference values are taken from [24].

Table 3. Calculated and DFT binding energies for first nearest neighbour interaction for
some of the solutes. The best predictions are highlighted in bold.

Solute DFT [24] CHG2 CHG3 M3GNet MACE SevenNet-o

Co–Co −0.043 −0.040 −0.022 −0.097 −0.077 −0.143
Cr–Cr −0.239 −0.010 0.040 0.023 −0.060 −0.095
Cu–Cu 0.246 0.301 0.054 0.046 −0.056 −0.004
Mn–Mn 0.079 −0.019 0.009 0.062 −0.011 0.047
Mo–Mo −0.277 −0.122 −0.038 −0.111 −0.070 −0.100
Nb–Nb −0.381 −0.296 −0.131 −0.291 −0.291 0.085
Ni–Ni 0.020 0.020 0.030 0.029 −0.047 −0.115
Ti–Ti −0.246 −0.341 −0.210 −0.100 −0.276 0.127
V–V −0.233 −0.118 −0.087 −0.111 −0.189 −0.072

The first-nearest neighbour interaction of some common alloying elements in steel are given
in table 3 for a quantitative comparison. CHG2 most often agrees best with DFT and it has
the smallest average absolute difference with the DFT values as well as the smallest average
difference with the DFT values squared. CHG2 is the most reliable in capturing attractive and
repulsive tendencies, except for Cr–Cr and Mn–Mn, while for Cr–Cr, Cu–Cu, Zr–Zr, Ag–Ag
and the platinum group it does not capture properly the distance dependence. This is not the
case for other potentials, withMACE being the worst as it predicts all interactions to be repuls-
ive. SevenNet-O shows the largest mean absolute error while CHG3 and M3GNet perform
poorly too. It is also noteworthy that although CHG3 is an ‘improved’ version of CHG2, it
performs worse.
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Figure 6. Solute–vacancy interactions for transition metals in BCC Fe. The binding
energies for the first to fifth-nearest neighbours are presented, as calculated with various
universal potentials. The DFT reference values are taken from [24].

Generally, the potentials struggle to capture the stronger first and second-nearest neighbour
interactions, while they are able to capture the decay of the interactions as they get closer to
the fifth-nearest neighbour.

Some specific elements that are worth mentioning are those from group 4 of the periodic
table, namely Ti, Zr, and Hf. CHG2, CHG3 and MACE properly describe the strong interac-
tion at the first-nearest neighbour and the rapid weakening with distance. A similar predictive
behaviour is seen for the elements of group 5 (V, Nb, and Ta) but to a lesser extent. Cu and
Ag also stand out, as these are the only elements that present strong attractive interactions
according to DFT. None of the potentials are able to predict the attractive Cu–Cu and Ag–Ag
interactions at first-nearest neighbour distances.

3.3.2. Solute–vacancy interactions. Results of calculations of the binding energies between
solutes and vacancies (Esv

b ) (see equation (5)) at various nearest neighbour separations (first
to fifth) are presented in figure 6. In general, the potentials accurately capture a common
trend across all elements: an attractive solute–vacancy interaction that weakens with increas-
ing separation—although some elements present a slightly repulsive interaction at the second-
nearest neighbour distance.

In terms of mean absolute average deviations fromDFT [24], for the first-nearest neighbour
interactions involving 3d transitionmetals and the for steel important alloying elements Nb and
Mo, SevenNet-o presents the best performance, with a value of 0.08 eV with the other MLIPs
giving all about twice higher values. SevenNet-o also most often gives the best agreement
with DFT (L0 norm), and the least average difference with DFT [24] squared (L2 norm) for
the first-neighbour configurations.
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Figure 7. (Left and centre) Solute–solute interactions for Cu–Cu and Cu–Ni in BCC
Fe. (Right) Solute–vacancy interactions for Cu in BCC Fe. The binding energies from
the first to the fifth-nearest neighbour positions are presented. Apart from the universal
potentials, additional DFT results from literature are shown: 1 [24], 2 [61], 3 [62], 4 [34].

Notable outliers are the predictions of SevenNet-o for the systems containing Zr and Hf,
where the binding values at the first, second, and fourth-nearest neighbour separations aremore
than 0.5 eV away from the reference value, and the general decaying trend is also not repro-
duced. SevenNet-o is not unique in failing for Zf and Hf, M3GNet does not reach structural
relaxation convergence within 105 iterations for these systems.

Similar to the solute–solute case, the potentials cannot accurately model the attractive inter-
actions predicted by DFT for Cu. This is also the case for Mn. All MLIP potentials systemat-
ically underestimate the attraction between late transition metals and a vacancy, especially for
the 3d series and less so for the 5d series. For group 10 (Ni, Pd, and Pt), the second-nearest
neighbour interactions are underestimated by all the potentials.

In figure 7, we present in more detail the binding energies for the case of Cu–Cu, Cu-
vacancy, and the additional case of Cu–Ni interactions with additional DFT results. We note
that there is significant variation in the DFT results. For the first-nearest neighbour interactions,
the DFT results [24, 61] differ by 0.11 eV for Cu–Cu, and by 0.10 eV for Cu-vacancy. The
trend of the binding energies from the first to the third-nearest neighbour interactions is not
uniform either; for Cu-Ni there is no consensus between the DFT results about the attractive
or repulsive nature of the second-nearest neighbour interactions [34, 62]. However, all DFT
results [24, 34, 61, 62] indicate a rapid vanishing of the interactions with distance.

3.3.3. Solute migration. In figure 8 we show the migration energy for single atoms of sub-
stitutional elements within a BCC Fe lattice as calculated with various universal interatomic
potentials. We also include reference DFT values for comparison [43]. The various universal
interatomic potentials roughly capture the behaviour displayed by DFT: for each of the con-
sidered periods (4, 5, 6) there is an increasing trend starting with the elements of group 4 (Ti,
Zr, Hf), peaking at group 9 (Co, Rh, Ir), and decreasing towards group 12 (Cu, Ag, Au) – the
only exception being Mn. The calculation of Ir with M3GNet, failed to converge.

On average, CHG3 performs worst, with a mean absolute error of 0.34 eV and with a
systematic underestimation for all the elements considered. SevenNet-o erroneously predicts
migration energies close to zero for the elements Ti, Zr, Nb, Hf, and Ta. This is in part due
to the strong attractive solute–vacancy interaction that SevenNet-o predicts for such elements.
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Figure 8. Migration energy for single atoms of substitutional elements within a BCC
Fe lattice (see figure 3), as calculated with various universal interatomic potentials. The
DFT reference values are taken from [43].

We also note that their equilibrium position is slightly shifted towards the vacancy, making the
transition path for vacancy migration shorter.

The best average performance is obtained by CHG2, with a mean absolute error of 0.14 eV.

4. Discussion

Universal MLIPs offer significant potential provided that at least three conditions are met: (i)
accurate reproduction of DFT results, at (ii) much greater computational speed, with (iii) better
scaling with system size. Here, mostly the accuracy aspects will be discussed with only minor
attention to speed and scaling. It is clear from the data we have presented here that the currently
offered universal potentials are not good enough to use off the shelf. As table 4 indicates, all
MLIPs fail badly for several properties with high relevance to modelling steel. In fact, some
properties such as the vacancy formation energy and the interaction of multiple C atoms with
a single vacancy are not well described by any of the five MLIPs. Especially troublesome is
the failure of CHG3 for the mechanical stability of the BCC Fe crystal structure as evidenced
by the negative value of C′ in table 1 and the failure of M3GNet to converge for surfaces, see
table 1, and for migration energy barriers for C and some substitutional solids, as well as for
some configurations involving C, see table 2. The remaining three MLIPS, CHG2, MACE,
and SevenNet-o, are quite similar in overall performance, but differ in their details.

The elastic constants, of great importance in modelling dislocations, are best described by
CHG2, with MACE as a second choice. For simulations involving free surfaces MACE is to
be favoured over CHG2.

For properties involving binding energies it is necessary that the model captures the type of
interaction (attraction or repulsion), and that it properly identifies the most stable configura-
tion. In simulations where C plays an important role MACE and CHG2 are of similar perform-
ance, with SevenNet-o less favoured because it performs less well on elasticity, surfaces and
migration in pure Fe. When substitutional solutes are concerned, solute–solute interactions,
important to describe clustering, precipitation and ordering, appear best described by CHG2,
while MACE and SevenNet-o are a little less successful. SevenNet-o outperforms CHG2 and
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Table 4. Performance of universal MLIPs on various materials properties. Vacancies are
indicated with □ and substitutional solute atoms with M. Interaction is abbreviated as
int.act. For energy properties the symbols are assigned according to absolute numerical
differences with the DFT target values (norm 1 loss):+ differs less than 0.1 eV, ◦ differs
between 0.1 and 0.25 eV,− differs 0.25–0.5 eV,−− differsmore than 0.5 eV. For surface
energies (elastic properties) the same numerical boundaries but in units of Jm−2 (100
GPa). Pathological errors, such a failure to reach energy converge after 105 structural
optimization iterations, or mechanical instability of the BCC Fe crystal, are indicated
by a ∗ superscript.

CHG2 CHG3 M3GNet MACE SevenNet-o

Pure Fe
aFe0 + + + + +
(Evf ) −− −− −− −− −−
EFe
m + − + + ◦
E(hkl)
s −− −− −−∗ ◦ −−
Cijkl ◦ −−∗ − − −−
C migration in Fe − −− −−∗ − −
C-□ int.act. ◦ − − ◦ ◦
C-□-□ int.act. − − −−∗ ◦ ◦
C–C int.act. ◦ − − ◦ ◦
C–C–□ int.act. −− −− −− −− −−
M–M int.act. + ◦ ◦ ◦ ◦
M-□ int.act. ◦ ◦ ◦ ◦ +
Mmigration in Fe ◦ − ◦∗ ◦ ◦

MACE on solute–vacancy interactions which are crucial for properly describing the kinetics
of substitutional solutes. All three MLIPs, CHG2, MACE, and SevenNet-o, perform similarly
for solute migration energy barriers. It must be mentioned that none of these three MLIPs
performs particularly well on solute energetics.

Overall, among the compared potentials CHG2 appears to be qualitatively reliable except
for the iron–carbon system. It should be noted that in kinetic simulations involving thermally
activated processes, quantities like the vacancy formation energy and migration energies
appear in exponentials. Therefore, even relatively small errors in MLIPs can give rise to large
discrepancies between MLIP predictions and DFT or reality. The carbon-vacancy binding is
of great importance [23] because it indicates how strong carbon segregates towards excess
volume, such as at grain boundaries and at dislocations. CHG2, MACE, and SevenNet-o all
perform very comparable when it comes to a single C interacting with a single vacancy, with a
typical error of 150meV. In a real sense, the vacancy diffusion in pure iron is of little relevance
since even with carbon concentrations at ppm levels it is expected that vacancies are decorated
with two or three carbon atoms. Therefore it is vital that models for steels reproduce faithfully
the binding energies and their ordering as found in [23], and as we see here this is not the case
for the universal potentials we have tested. When two C are interacting with a vacancy the
errors are much larger, typically 0.5 to 1 eV, with the second C atom giving no, or almost no
energy gain in marked contrast to the DFT results, see table 2. DFT calculations have shown
that carbon-vacancy complexes with even more C atoms occur at much higher concentrations
than vacancies without any bonded carbon, see e.g. figure 3 in [23].
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In the very recent motivation in steel metallurgy to study tramp elements in remelted steels
as well as the roles that substitutional elements play in properties including strength, toughness,
hardenability and so on, it is certainly very attractive to have access to universal interatomic
potentials that are advertised as covering essentially the whole periodic table. The current
results show that MLIP performance is strongly solute dependent. Although CHG2 overall
performs best for solute–solute interactions, Ti–Ti and V–V were best described by MACE,
while Cr–Cr was best described by SevenNet-o. For Cu–Cu none of the MLIPs performed
well. For solute–vacancy interactions SevenNet-o performed considerably better than CHG2
and MACE. Nevertheless, for some cases SevenNet-o failed in dramatic fashion: Mn, Co, Ni,
Zr, Hf were poorly described. The other MLIPs performed not much better for these solute–
vacancy interactions.

The performance variability occurs for all universal MLIPs. We surmise that this originates
from incomplete training datasets. Although there is a large number of configurations in the
training datasets, they do not cover the configuration space well. Defected crystal structures,
which are essential for any realistic materials modelling, are under-represented as the current
datasets5 consist of equilibrium configurations or configurations close to equilibrium [64]. This
makes most property predictions, other than the equilibrium lattice parameter, an extrapolation
for the MLIPs, which are known to perform poorly when extrapolating. This is especially
true when calculating the surface energy or the vacancy formation energy where the atomic
environments differ much from the training datasets. To improve the MLIPs, relevant defected
configurations must be included during the initial training or must be used for subsequent
fine-tuning. Furthermore, the loss functions and metrics that are used for training and rating
universal MLIPs are not representative of specific materials, or of realistic materials modelling
centred around defect behaviour. A case in point may be modelling a large cell with about a
hundred atoms and a single vacancy. The error in the energy averaged per atom may be very
small, say 10 meV, but ‘averaged’ over this single vacancy it will be two orders of magnitude
larger, at which point it approaches the value of the vacancy formation energy itself.

The variability in DFT results of ostensibly the same quantity is a matter of concern. This
is exemplified in variations in elastic constants, see table 1, and also in the Cu binding curves,
see figure 7. While it is customary to assert in the materials science community that there
exists a well-defined DFT value for a given property, there are at least three reasons why
DFT results differ across multiple publications. The first may be called ‘user error’, in the
sense that convergence with respect to basis set, k-point mesh and supercell size may not
have been achieved. The second is a consequence of the variety of exchange and correlation
functionals: the standard local-spin-density functional forms [65, 66], are not used these days
as they underestimate the lattice constant of iron and overestimate the bulk modulus; on the
other hand there is a variety of gradient-corrected functionals which yield the correct lattice
constant but overestimate the magnetic moment. Thirdly, there is the choice of electron-ion
potential: these vary from all-electron descriptions to various flavours of pseudopotentials to
the augmentation methods employed in the projector augmented-wave approach [67].

As a consequence, training data sets need to be composed using a uniform methodology
and using uniform computational settings.

5 Even the latest databases, such asOMAT24 [63], mention specifically that the focus is on perfectly periodic structures
without defects.
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5. Conclusions

Universal MLIPs have been used to calculate a range of properties relevant to modelling
of steel. The properties were limited to those for which DFT values have been published.
Accuracy of (defect) energies only was considered, computational speed, memory require-
ment, scaling with system size, and even efficiency of structural optimization, i.e. number of
required ionic iterations, were not considered. It might be worthwhile to mention that force
convergence was much poorer than what was expected on the basis of energy convergence.
Globally, the MLIPs performed impressively on energetic properties. Qualitatively at least,
MLIPs appear remarkably able to reproduce trends and to predict some properties of pure iron,
such as, say, surface energies. Especially CHG2 stood out, but also MACE and SevenNet-o
often gave surprisingly sensible results. However, as the current MLIPs are trained on perfect,
defect-free crystal structures, they generally perform much worse on defect properties as that
the published loss values would suggest. modelling realistic materials usually involves defects
and often thermally activated processes mediated by defects as well. Therefore, current MLIPs
are not yet capable to accurately represent realistic processes in specific materials such as steel.

The extreme subtleties arising from the presence of both interstitials and numerous substi-
tutional elements mean that for now better models, maybe with a narrower scope, are needed.

We have also exposed in the this study the surprising conclusion that even with modern
DFT codes, their results taken from various sources can be as widely differing as the univer-
sal machine learning potentials, hence values to compare must be carefully chosen. This fact
should not be ignored.
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Appendix. Comparison between CHG2 and CHG3

Three key distinctions exist between CHG2 and CHG3. Firstly, the data partitioning for train-
ing, validation, and testing differs. CHG2 employs an 80-10-10 split, whereas CHG3 utilizes
a 90-5-5 split. Secondly, variations are observed in the model parameters (table A1). Finally,
discrepancies in the training parameters are also evident (table A2).
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Table A1. Model parameter comparison between CHG2 and CHG3.

Model Parameter CHG2 CHG3

Number of radial components 9 31
Number of angular basis to use 9 31
Normalization layer to use on the gated MLP None layer
Readout MLP hidden dimensions [64, 64] [64, 64, 64]
Cutoff radius (Å) in creating the graph adjacency list 5 6
Cutoff strength used in graph smooth cutoff function 5 8
Bias in the output MLP Linear layer True False

Table A2. Training parameter comparison between CHG2 and CHG3.

Training Parameter CHG2 CHG3

Decay Fraction 1× 10−2 0.5× 10−2

Training epochs 20 30
Initial learning rate 1e-3 5e-3
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