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Abstract

Tight-binding has historically been a method of great importance for predicting prop-
erties and gaining insight into transition metals—it explicitly includes quantum me-
chanical e�ects, thereby being accurate in comparison to empirical potentials, while
circumventing large computational overheads of Density Functional Theory (DFT).
This preferential scaling makes it well-suited for the simulation of defects, which can
require large simulation cells due to constraints of periodicity and the generation of
large strain fields. Modern titanium tight-binding models have so far been lacking
in their description of defects compared to DFT. All have had erroneous stacking
fault energies, which are necessary for an adequate description of dislocations, the
defects which control plasticity in metals. As such, simple tight-binding models of
titanium were fitted: a d-electron only model, and one with both s and d-electrons,
both of which gave good agreement with bulk properties and energetics of titanium
polymorphs in comparison to DFT and empirical data. These models were meshed
with a re-fitted polarisable-ion tight-binding parameterisation of titanium dioxide and
water, resulting in the first tight-binding model able to describe: bulk Ti, TiO2, TiH2,
H2O and H2. This combined model was used to simulate oxygen/hydrogen dissolu-
tion in titanium and adsorption of water on titanium, the results of which agreed well
with DFT, testing model transferability. This model allows for many applications,
such as novel electrochemical simulations within tight-binding. The correct order-
ing of stacking fault energies in hcp Ti was successfully reproduced by the titanium
models, but relaxations of the 1

3È12̄10Í screw core found a larger prismatic spread-
ing, with exhibition of a reduced number of metastable core structures compared to
DFT. The predicted prismatic Peierls stress was, however, in agreement with exper-
iment. Oxygen-dislocation interactions were investigated to provide insight into the
large strengthening e�ect of oxygen in titanium, at more realistic concentrations. A
new mechanism for jog formation was found, which was in agreement with ab-initio
“-surface data. This new mechanism could explain the observation of increased slip
planarity and frequency of jog formation with oxygen content in titanium. Further



investigations were made in a tight-binding parameterisation describing iron and car-
bon, to understand potential mechanisms of dislocation-assisted carbon migration, as
theorised in bearing steels. This was achieved by a multi-scale modelling approach,
involving a line-tension model, which was parameterised on tight-binding simulations
of the 2d Peierls potential exhibited in bcc iron, and carbon-dislocation interactions.
This model was able to show a reduction of the kink-pair formation enthalpy of dis-
locations as a function of carbon content and stress, resulting in carbon-enhanced
localized plasticity, surprisingly to a lesser degree than the e�ect shown by hydrogen
in iron. Tight-binding was able to reproduce the stabilisation of the metastable hard-
core, which is not apparent in empirical potentials, and it was shown that this hard
dislocation core is the most likely to be exhibited, even in high-purity iron, due to the
large binding energy of carbon to the screw core. Furthermore, carbon di�usion bar-
riers around the hard core were shown to be greatly reduced compared to that of bulk
di�usion, thereby validating a mechanism for dislocation-assisted carbon migration in
iron and bearing steels; in addition to explaining the softening e�ect of carbon on
the temperature dependence of the flow stress. The aforementioned calculations push
what can be achieved with simple tight-binding models, in terms of scalability and
transferability, allowing for many novel simulations to be attempted using an explicit
description of quantum mechanics.
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Chapter 1

Introduction

1.1 Titanium
Titanium is a ubiquitous metal. Its alloys are used in many applications: from
aerospace, due to its high strength-to-weight ratio, toughness and temperature re-
silience; to biomedical applications, due to corrosion resistance from the TiO2 oxide
layer and a biocompatible bulk modulus [1].

The alluring properties of titanium are mainly due to its allotropes, of which the
most desirable phases are the hcp (–) phase and the bcc (—) phase. In high purity
titanium, the hcp phase is found at low temperatures, with transition to the bcc
phase occurring at temperatures above the —-transus, ≥ 885¶C in pure Ti, where it
is dynamically stabilised by entropic contributions [2]. Ê is a brittle titanium phase,
observed at high pressure. It can be formed from a martensitic transformation of the
— phase due to the collapse of two (111) planes, which can proceed near the speed of
sound, interfering with the desired ductility of — alloys [3, 4]. Other phases, such as
fcc (“) and ” (distorted bcc) have been observed at high pressure [5, 6].

Understanding the motion of dislocations is paramount to understanding plasticity
in metals. Dislocations are line defects in the crystal structure of a material, char-
acterised by a Burgers vector b. These defects allow for the slip of a crystal along
a plane at a reduced shear stress: for a dislocation to propagate slip, only a line of
atomic bonds need to be broken, rather than a whole plane [7]. They are therefore the
mediators of plasticity. There are two extremal characters of dislocations: edge and
screw. Edge components generally have a high mobility, hence it is the screw compo-
nents which control plasticity. The dislocation core is the centre of the defect (around
1b in radius) which accommodates most of the deformation. The displacements found
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in the core region form the core structure of the dislocation, which dictates how the
dislocation can move. Di�erent planes have di�erent resistances to dislocation mo-
tion, due to the accommodation of deformation in distinct local atomic environments.
Screw dislocations can change the plane on which they move: they undergo cross-
slip, whereas edge dislocations are confined to slip in their glide plane. The theory of
dislocations will be described in more detail in section 2.6.

The hcp crystal structure has four slip planes: basal (B, {0001}), prismatic (P,
{101̄0}), first-order pyramidal plane (fi1, {101̄1}) and second-order pyramidal plane
(fi2, {112̄2}, as seen in figure 1.1.

Fig. 1.1: Diagram of planes in hcp showing the Burgers vectors of b = ÈaÍ and b = Èc + aÍ
dislocations.

The von Mises criterion states that five independent slip systems are necessary for
deformation in a crystal which preserves volume [7]. Enumerating the independent
slip modes for the slip systems of an b = 1/3È12̄10Í = ÈaÍ dislocation, one finds only
four independent slip systems. As such, other deformation modes, notably twinning
modes, are necessary to be activated, for adherence to the constraint of compatibility.
Deformation twinning is the accommodation of shear such that the crystal structure
is mirrored along the twin plane. The bcc crystal has 12 independent slip systems,
which confers the high ductility of — titanium to that of –.

With the addition of alloying elements, the – and — phases can be stabilised. For
– phase, C, N, O and Al act as stabilisers, whereas the — phase is stabilised by, H and
larger elements, which are mainly substitutional, such as V, Mo, Cr.
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By variation of the alloying content, solution temperatures, cooling rates, amount
of work, ageing and other process parameters, –, – + — and — phase alloys can be
created. The variation of the resulting microstructure is complex, and can be tailored
to the application of its use. The interfaces between the – and — phases are barriers
to the motion of dislocations, and play an important role in the yield strength of the
alloy, hence the microstructure of the material is a vital consideration.

Many alloys are worked in the —/–-— phase field to give a small — grain size, to
increase hardness of resulting grains on crystallisation by Hall-Petch strengthening:
smaller grains increase strength due to a reduced probability of dislocation pile-ups on
grain boundaries. The primary – precipitates from the — phase as laths [8], which are
formed in a Burgers orientation relationship with the — phase. Slow and fast cooling
rates can form colonies of – phase or basket-weave structures. If worked, the – phase
colonies can be broken up, becoming equiaxed, allowing for a more random grain
orientation distribution in the polycrystal. Depending on solute content of the alloy,
one can find secondary and tertiary – which are interspersed in the fine — between
the primary – laths, which can form from ageing and recovery respectively, which
enhance the strength of the material by Hall-Petch strengthening. Grain boundary
– precipitates between prior — grains, which are known to be crack initiation sites
[9]. Fractures have been seen to arise from conditions which enhance planar slip and
strain localisation from dislocation movement, which are found in the – phase with
oxygen content [1]. As cracks have been seen to initiate in the – phase, we will mainly
consider the e�ects of dislocations in this phase hereon, with the e�ect of oxygen being
addressed later, both of which are pertinent to the simulations performed in this thesis.

HCP metals are generally thought to obey the Schmid law [10]

‡n = ‡0 cos „ cos › = ‡0m, (1.1)

where plasticity by slip is initiated when the resolved shear stress on a given plane,
‡n, from an applied tensile stress ‡0, reaches a critical value [11]. The factor m =
cos „ cos › is the Schmid factor, where the angles „ and › are both measured from
the tensile axis to a vector in the slip plane, or to the slip plane normal respectively.
This law was verified by Schmid and Boas for hcp metals which preferentially slip
on the basal plane, such as Md, Cd and Zn. However, in titanium, the Schmid law
has been observed to fail. This was detailed by Naka et al. [12], where ÈaÍ screw
dislocations—the primary active dislocations in titanium—were found to cross-slip
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from the prismatic to fi1 planes at temperatures of 300-500K, suggesting a pyrami-
dally spread core structure can exist at these temperatures, as theorised by äob et al.
[13]. Akhtar [14] found basal slip and twinning in single crystals with failure of the
Schmid law, in agreement with recent work by Barkia et al. [15]. As suggested by
Naka [12], the failure of the Schmid law suggests that the Peierls frictional force—the
force generated from the Peierls potential, the energy landscape which dislocations
experience moving through the crystal—can control glide, due to the response of the
spread core structure to di�erent stress tensor components [16].

Fig. 1.2: Peierls (kink-pair) mechanism (left) and locking-unlocking mechanism (right) of
dislocation glide in hcp titanium, as suggested by Farenc [17–19]. EP is the Peierls
potential. Left: kink-pair mechanism of glide occurs by dislocation overcoming
potential, starting from a Peierls valley (a), thermal activation causes dislocation
to bulge over Peierls barrier hump (b), with a su�cient activation energy, stable
kink-pair is formed (c), causing full transition to next valley on kink migration
(d). Application of increasing stress increases the incline of the potential, reducing
activation energy for transition. Right: the locking-unlocking mechanism is where
sessile, ground-state core, in the Peierls valleys, can gain energy, allowing for
transformation to glissile metastable core, found at the peaks. This dislocation
core moves quickly a distance yg, the jump distance, after which it decays back
to the sessile ground-state in the Peierls valley. Kink-pair formation is where
dislocations traverse a distance h by overcoming the peak of the potential, and
falling into the next valley.

Dislocations controlled by frictional forces undergo glide by a Peierls (kink-pair)
mechanism, see figure 1.2, left. In this mechanism, dislocations glide by moving from
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an initial valley in the potential (a Peierls valley) to the next. To do this, segments of
the dislocation line must overcome the Peierls potential by thermal activation. When
a large enough portion of the dislocation line has transitioned over the barrier, a stable
kink-pair has formed—which is a critical (saddle point) configuration—after which the
dislocation can easily transit to the next valley. The enthalpy change necessary to form
this configuration from the initial Peierls valley is the kink-pair formation enthalpy.
One can think of a dislocation in this potential as a string weighted with beads, which
one pulls over the Peierls potential: when enough beads (thermally activated segments)
are in the next valley (when a stable kink-pair has formed), the rest of the string will
follow over the barrier, causing glide. If there are not enough beads over the barrier,
the kink-pair is unstable, so it annihilates, resulting in the dislocation line staying
in the original Peierls valley. With application of increasing stress, the activation
energy necessary to overcome the potential decreases, and at some critical stress, no
activation energy is necessary, which gives the Critical Resolved Shear Stress (CRSS).
Farenc et al. [17, 18], proposed the jerky glide of screw dislocations between 150-
473K is controlled by a locking-unlocking mechanism, as described in figure 1.2, right,
where the ÈaÍ screw dislocation cores change between a metastable glissile prismatic
core (unlocking) and ground-state pyramidal sessile core (locking). The metastable
core can “skip” over the Peierls potential a certain distance, yg, before decaying to the
ground-state. Each of the aforementioned studies suggest that glide of ÈaÍ dislocations
in titanium mainly occurs on the prismatic plane.
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Fig. 1.3: Flow stress and activation area variation with temperature in Ti, oriented for
prismatic slip from Caillard [16] with results from various authors [12, 20, 21].

Discontinuities in the temperature dependence of the activation area (the change
in Gibbs free energy with respect to change in stress, per unit b) are found in tita-
nium around 300K [12, 16–18, 20], indicating there are di�erent thermally activated
mechanisms which act in di�erent temperature ranges, as seen in figure 1.3. Biget
and Saada [22] found in very high purity titanium (≥ 50 ppm Oú) and at very low
temperatures (4K), a ‡≠2 stress dependence of the activation area, which is consistent
with the bowing of a dislocation, implying a sessile ground-state core configuration
in the low temperature limit. This critical bowing theory was originally proposed
by Friedel to explain prismatic cross-slip in hcp metals [23]. Farenc et al. [17] sug-
gest this ‡≠2 dependence gives evidence to a locking-unlocking mechanism, initially in
opposition that of a Peierls mechanism, where activation areas have a ‡≠1 or ‡≠1/2 de-
pendence [18], but later reneged, to include a Peierls mechanism in conjunction with
locking-unlocking [17]. This explains the experimental observations of a reduction
in dislocation jump distance with increasing temperature (ranging from 150-473K)
[16, 17]. Farenc et al. proposed three regimes: a low temperature, high stress regime
where dislocations bow out due to locking giving rise to the ‡≠2 dependence of acti-
vation area; an intermediate regime of both temperature and stress, where large kinks
(macrokinks) form, where locking-unlocking still occurs, but a kink-pair mechanism
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is active and then a high temperature, low stress regime, where a kink-pair mecha-
nism dominates. Rectilinear dislocations have been observed, suggesting some form
of kink-pair mechanism operates at a large range of temperatures [12, 15, 16, 24].
Considerations by Orawa [25], state that there could be two mechanisms occurring at
the same time at low temperature—that of a Peierls mechanism and dislocation-solute
interactions—which is apparently consistent with the activation area results found in
high purity titanium [20]. Conclusions by Caillard suggest a Peierls mechanism in
conjunction with a locking-unlocking mechanism [16].

Oxygen has profound e�ects on titanium. There are dramatic increases in the
yield strength [26, 27], with reductions in ductility and toughness [28], and changes
in slip behaviour [1]. The increases in hardness are not in-keeping with standard
solute hardening mechanisms, such as that of Fleischer [26, 29, 30]. This suggests that
hardening occurs from chemical interactions of oxygen with the core of dislocations
[31]. How oxygen a�ects slip in titanium is not well understood, with conflicting
results in the literature. Williams found a wavy-to-planar slip transition with an
increase in oxygen content [24], which has also been observed by Chong et al. [28],
who further showed that this transition was also a function of decreasing temperature
and increasing strain rate. However, in situ tensile tests of Barkia et al. [15], note
an increased instability of prismatic glide with oxygen content [15], suggesting that
the ratio of the fi1 CRSS to prismatic CRSS decreases with increasing oxygen content,
which is consistent with a lack of fi1 slip activation seen at low (≥ 100ppm. O) oxygen
content in other studies [32]. A suppression of prismatic slip was also seen with
an increase in oxygen content in work by Zae�erer [33]. Barkia et al. remark that
homogeneity in slip with high oxygen content, as found in nanopillar compression tests
[26], could be due to the high stresses involved, which activate other slip systems, such
as Èc+aÍ [26], which was not seen in Barkia et al.’s work. From these conflicting results,
more work is necessary to understand the influence of oxygen on slip in titanium. The
main questions that need to be answered are:

1. What is the mechanistic origin of the dramatic increase in yield strength with
oxygen content?

2. What is the origin of slip planarity with oxygen content?

3. Why is prismatic slip destabilised in some studies but not in others with oxygen
content?

7



Introduction

1.2 Iron
Many technologies central to modern society rely on bearings. Hence the study of
martensitic bearing steels, and specifically, understanding the fundamental processes
behind their failure, is critical to improving their performance. One particular pathway
of failure is that of rolling cycle fatigue (RCF), where the microstructure of the steel
decays on repeated stress cycles [34–39]. To understand the mechanism behind this
decay, we will first focus on martensitic steels.

Martensitic steels are created from carbon-enriched austenite (“/fcc iron) where the
iron is heated to around 840–860° C (austenitisation) [34]. On quenching, the famous
martensitic transformation occurs, where the carbon-enriched austenite transforms to
a supersaturated ferrite phase (–/bcc iron), in which carbon becomes trapped, forming
a body-centred tetragonal structure. The martensitic transformation creates numer-
ous dislocations, which strengthen the steel. After tempering (at 160–170¶C), which
allows for di�usion of solutes, one finds the following phases in the material: tem-
pered martensite, austenite which has not transformed (retained austenite), residual
cementite (Fe3C)—cementite which did not dissolve during austenitisation, tempered
cementite and tempered transition carbides (M3C, where M is one of the metals Mn,
Cr or Fe).

As will be discussed in chapter 5, one finds that the martensite in bearing steels
can decay, forming ferrite, among other carbon-rich phases. Therefore, we will focus
on the properties of the bcc phase of iron hereon.

8



Introduction

Fig. 1.4: Diagram of slip planes in bcc showing b = 1
2È111Í dislocation. Blue area swept as

a dislocation glides on the (11̄0) plane.

The low-temperature properties of bcc metals were one of the first known to be
determined by a Peierls-type mechanism for dislocation motion, and iron is no excep-
tion [16]. Dislocations in iron are generally b = 1

2È111Í type, as seen in figure 1.4,
and again, due to the high mobility of edge dislocations, screw dislocations control
plasticity. There is a deviation from the Schmid law, equation (1.1), where the CRSS
of iron changes with the sense of stress (“twinning/anti-twinning asymmetry”) and
whether tension/compression is applied (“tension/compression asymmetry”) [40–43].
These can be attributed to the symmetry of the bcc structure along the È111Í di-
rection, where screw dislocation displacements have a three-fold symmetry, and the
core structure of dislocations, where small edge components respond to the non-glide
components of the stress tensor [44].

Carbon is generally found in octahedral sites in the lattice, where it generates
a tetragonal distortion: a reduction in the lattice parameter on the z axis, and an
increase on the x–y axis. This produces dilatational and shear components of stress,
which results in a binding of carbon to both edge and screw dislocations: solutes usually
just produce a dilatational strain field, which only interacts with the dilatational field
of an edge dislocations. Therefore Cottrell atmospheres are formed, where carbon
segregates to the environment around edge and screw dislocations [7].
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Fig. 1.5: Flow stress and activation area variation with temperature in Fe, oriented for
1
2È111Í {110} slip, from Caillard [16] with results from various authors [45–47].
We see at two di�erent stress axes (A and B) that there is a di�erent flow stress cor-
responds to the twinning/anti-twinning asymmetry. Carbon decreases the CRSS
at intermediate temperatures, and increases it at high temperatures.

Carbon has pronounced e�ects on the flow stress in iron. One sees that carbon
does not have a uniform e�ect, generating a softening e�ect, reducing the CRSS, at
intermediate temperatures, while increasing the CRSS at higher temperatures, causing
hardening, as seen in the flow stress/activation area curves in figure 1.5. Other studies
have also found a hardening e�ect at very low temperatures [48]. The softening e�ect
is interesting, given that one would expect the opposite to occur due to dislocation
pinning by solutes. It has been suggested that a locking-unlocking mechanism occurs
with iron at low temperature [48], which has been used to explain the peak found in
the dependence of flow stress with temperature, where in the low temperature, high
stress limit, there is a small bulge, which becomes a large bulge/macro kink-pair at an
intermediate temperature, with higher temperatures being dominated by a kink-pair
mechanism.

As found by Cottrell and Bilby [49], the dynamic strain ageing of iron—the phe-
nomenon of a serrated stress-strain curve—can be attributed to carbon being attracted
to screw dislocations, forming Cottrell atmospheres, where a carbon environment sur-
rounds the dislocation line, which pins/inhibits dislocation motion. Upon action of
su�cient shear stress, these dislocations break away from the environment of carbon
which inhibits them. The usual accepted theory is that after periods of quiescence,
carbon can equilibriate with the dislocation forming another atmosphere. It is usually

10



Introduction

assumed that, due to the large barrier for migration (the energy barrier that carbon
needs to overcome to hop to a new octahedral site: the di�usion barrier) carbon is sim-
ply left behind by the dislocation at temperatures around 300K. However, in bearing
steels, there have been reports of a degradation of the microstructure, with a migration
of carbon which is not commensurate with that of bulk di�usion [35, 39, 50–53]. It
has been theorised that this is due to dislocations being able to drag carbon at these
temperatures by a dislocation-assisted carbon migration mechanism, but this has not
been verified by atomistic simulations and it cannot be probed experimentally. Hence,
more research is needed, particularly to answer the questions:

1. Is carbon able to migrate with dislocations?

2. If so, what are the mechanisms of migration?

3. Under what regimes of stress, temperature and carbon concentration can this
mechanism occur?

1.3 Computational modelling
From the above review, we see there is a need for atomistic modelling of oxygen in
titanium, to understand the mechanisms behind large increase in the yield stress with
oxygen content, which is theorised from oxygen-dislocation interactions. Furthermore,
an investigation into the hypothesis of dislocation-assisted carbon migration in iron
is necessary, and if it is indeed possible, the atomistic mechanisms by which this
process occurs need to be ascertained. To tackle these problems, one must choose
an appropriate method by which one can describe atomic interactions, to accurately
elucidate the mechanisms of origin.

A key requirement of these models is the ability to accurately simulate dislocations
to find the ground-state core structure. This is the most important feature to deter-
mine. Dislocation core structures dictate the glide planes on which dislocations can
move, which in-turn, provide insights into plasticity and hardening upon solute inter-
actions. These are solely determined by the description of atomic bonding. Therefore,
it is paramount that one uses a method which gives an accurate description of atomic
bonding/forces. But, the simulation of these defects requires a large number of atoms,
due to the long-ranged strain fields which are generated. An insu�cient number of
atoms will result in a dislocation core structure which is not representative of the
ground-state, thus hindering the prediction of potential mechanisms.
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There is a trade-o� which must be balanced: with increased capability of compu-
tational scaling comes the cost of more approximations being taken on-board, which
could reduce the accuracy of the description of atomic bonding. Improved scaling
allows for a broadening of potential simulations that can be performed—such as de-
termining energy barriers for solute migration around dislocation cores [54–56], as
would be necessary for investigation into dislocation-assisted carbon migration, or
finding kink-pair formation enthalpies directly from atomistic calculations [57], simu-
lation of dislocation loops [58] or the ability for novel simulations altogether, such as
electrochemical simulations at the quantum scale for elucidating corrosion mechanisms
et cetera. The required accuracy is that of dislocation core structures which are com-
mensurate with experimental observations of dislocation glide—a prismatic/pyramidal
core structure for titanium, for example. This suggests a method which describes the
quantum mechanics of bonding and the resulting forces, su�ciently well.

The current gold-standard in the calculation of interatomic forces is that of DFT
(Density Functional Theory), as will be explained in the theory section 2. Regular DFT
methods scale as O(N3), where N is the number of atoms, due to the diagonalisation
of the dense Hamiltonian matrix.

DFT has an advantage that it is ab-inito: it is derived from first-principles quantum
mechanics and does not rely on empirical results, or parameter fitting. But, one should
not take this as a statement of DFT producing objective truth. The success of DFT
relies on the choice of exchange-correlation functional [59]. Furthermore, systematic
errors are included which cannot be avoided, resulting in erroneous phenomena, such
as a poor reproduction of band gaps, of which accurate reproduction necessitates
a higher-order technique describing quasi-particle excitations and not ground-state
properties [60], and delocalisation phenomena [61]. In addition, the scaling of DFT
is rather prohibitive, and it would be ideal if the method used could scale to include
many atoms for the study of more complex systems and phenomena.

One way of improving the scalability of an interatomic force method is to parame-
terise them. This is where one compresses many complexities of reality/a higher-order
model into numbers, which typically define some function of interest: say a repulsive
energy between two atomic species (a pair potential). To obtain these numbers, one
fits to data which one wants to reproduce, such as empirical lattice parameters, or
particular energies from a higher-order method et cetera. How one goes about fitting
depends on the particular method used. The ultimate goal in fitting these models is
transferability—one model which can be used in many situations, which are far re-
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moved from the data that was used to fit it, thereby showing a level of generality. The
only way to test this is by use of empirical data.

Possibly one of the most simple paradigms of parameterised, interatomic force
model is that of the Embedded-atom Method (EAM) [62], a generalisation of Finnis-
Sinclair second-moment models [63], which scale as O(N). In this method, one obtains
a per-atom energy, which is the value of an embedding function and a sum of pair
potentials. The former function describes the energy necessary to place the atom
within a background electron density. An extension of this method is the Modified
Embedded-atom Method (MEAM) [64], where angular variation of the electron den-
sity is introduced to the EAM, allowing for more flexibility [64]. In modern EAM
methods, arbitrary functional forms with many parameters—which are not based on
physical considerations—are used to fit to the supplied data, but, typically they are
not transferable: one iron EAM may be applicable to the bulk, but it will likely be
inaccurate in simulating surfaces, for example [65].

More complex, data-driven schemes have been introduced in the past decade to
capture the complexities associated with the local atomic environment and bonding,
in a hope to create transferable models. Gaussian approximation potentials (GAPs),
introduced by Bartók and Csyáni [66–68] try to reproduce the energy functional ob-
tained in electronic structure calculations (usually DFT), by the fitting of local energy
functionals parameterised by suitable descriptors defined for the potential, e.g. bond
angles, atom-centred contributions etc. These models are fitted by Gaussian process
regression, which uses kernel/covariance functions to measure correlation between de-
scriptors. This has provided potentials which encapsulate DFT results reasonably
well, with O(N) scaling, but with the rather large caveat that very large amounts of
data are necessary to fit to: in the case of a recent study of pure silicon, this amassed
171,815 separate atomic environments [69]. The memory overhead is sizeable too, with
some current GAP potentials needing terabytes of RAM to fit/use, thereby decreasing
computational expense at the increase of memory expense.

The Atomic Cluster Expansion (ACE) is another data-driven method of inter-
atomic potential fitting, which scales linearly (O(N)). It consists of performing
Gaussian-process regression to a fitting database, but using a kernel function which
can be physically interpreted: it can be thought of as a generalisation of empirical
potentials, such as the Finnis-Sinclair method, to higher multi-body order terms [70].
This has advantages, as one can treat magnetism in a natural way [71]. But, again,
one needs a large database of environments to fit these potentials.
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The aforementioned data-driven models have an advantage in that they are, in
theory, systematically improvable: by adding more data you could improve your result.
But, these models have a large disadvantage: the fitting database must account for
all the environments one expects to find in the simulations of interest, as there is no
physics-based model to rely on: data is the physics. In addition, the inclusion of more
than one species means an ≥ O(N2

s ) increase in the amount of ab-initio calculations
to fit to, where Ns is the number of species. As such, with a larger number of species,
the amount of training data to fit to is usually pared down to those specific scenarios
one wishes to simulate, creating a model which is not transferable.

Due to the necessity of a good description of atomic bonding for accurate resolution
of dislocation core structures, one can use a simple quantum mechanical method to
describe electronic bonding, but with better scaling by parameterisation. This can
be achieved with tight-binding. These models circumvent the need for a very large
fitting database when trying to describe multiple species, in addition to a reduction
in the large memory overheads compared to data-driven parameterisation methods.
Another advantage is that they are physically interpretable: energy contributions can
be analysed naturally, allowing for the physical origin of phenomena to be discerned.

Tight-binding models can be thought of as approximations to DFT, as discussed
in section 2.3.1. In these models, one describes the bonding between atomic species,
typically, just the valence orbitals. This allows for a smaller basis, and therefore a
smaller Hamiltonian, allowing for faster diagonalisation compared to DFT. Further-
more, many computationally-heavy complexities which come with DFT (such as the
requirement of solving Poisson’s equation for the potential) are dealt with in a less
computationally taxing way, or swept into a pair potential, reducing the computational
cost further. So although these models scale as O(N3), under a direct-diagonalisation
scheme, the prefactor to this scaling is orders of magnitude less than DFT. This allows
for the simulation of many more atoms: it has been shown that DFT method can re-
produce the core structures of dislocations, with ≥ 200–580 atoms [72–77], whereas for
equivalent computational resources in tight-binding, simulations can be ≥ 600–1200
atoms, depending on the level of approximation one uses for the tight-binding model.
Furthermore, scaling can become O(N), by using a Bond-Order Potential (BOP) [78–
80] approach to approximately diagonalise the Hamiltonian, increasing the number of
atoms which can be simulated to many thousands.
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1.4 Overview and Objectives
In this thesis, the focus is on the parameterisation and use of simple tight-binding
models, due to their: explicit description of atomic bonding by quantum-mechanics;
physical interpretability; and scalability, compared to DFT methods and more com-
plex tight-binding models. The limits of their scalability will be demonstrated by the
simulation of dislocation-solute interactions which require large system sizes. In ad-
dition, the limits of transferability with these tight-binding models will be tested by
parameterisations which simultaneously describe starkly di�erent materials: titanium,
titanium dioxide, titanium hydride and water. Using these models, potential mech-
anisms for hardening in titanium and dislocation-assisted carbon migration in iron,
are sought. With the preferential scaling of these models, simulations beyond what
is possible in DFT can be achieved, allowing for novel simulations which need both
an explicit description of quantum mechanics and scalability, such as electrochemical
simulations and elucidation of interfaces et cetera.

The outline of the structure of this thesis is as follows.
In chapter 2, the theory behind DFT, tight-binding and dislocations is described,

along with saddle-point search methods, the latter of which are pertinent in chapter
5.

In chapter 3, one will show the process of fitting simple tight-binding models to de-
scribe bulk titanium, in addition to the parameterisation of titanium interactions with
other species (oxygen and hydrogen), giving models for titanium dioxide and titanium
hydride. In performing this fitting, and meshing with a previous model of water, the
first ever transferable tight-binding model, which can simultaneously describe bulk
titanium, titanium dioxide, titanium hydride and water is created, paving the way for
future simulations of stress-corrosion cracking and electrochemistry at the quantum
scale. An evaluation of the models, and their appropriateness for the simulation of
defects, is achieved by various validation tests.

Upon the success of the validation tests, in chapter 4, the titanium and titanium-
oxygen interactions which result from the fitting process are used to simulate oxygen-
dislocation interactions, to determine the mechanistic origins of solute-hardening in
titanium with oxygen content. These simulations are also used as a means to test
the scalability of the tight-binding models, by use of large system sizes for dislocation
simulations, and transferability, by comparison to DFT and empirical data.

In chapter 5, a simple tight-binding model describing iron and carbon is used to

15



Introduction

investigate a dislocation-assisted carbon migration mechanism, theorised in bearing
steels. This is achieved by simulation of carbon-dislocation interactions, in which
the kink-pair formation enthalpy is calculated as a function of carbon content by a
line-tension model. Further di�usion barrier calculations push tight-binding to its
limits of computational time with a magnetic system. Analysis of carbon migration
barriers in the vicinity of screw dislocations show novel mechanisms where carbon can
keep up with dislocations in the operating temperatures of bearing steel, validating
the dislocation-assisted carbon migration mechanism, and explaining the origin of
carbon-induced changes to the flow stress with temperature in iron.
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Chapter 2

Theory

2.1 Introduction
To accurately model the behaviour of an assembly of atoms we must use quantum me-
chanics. The first postulate of quantum mechanics states that a quantum mechanical
system can be described by a wavefunction, a function of the positions of the quantum
mechanical entities, and time, which satisfies the Schrödinger wave equation. As such
we know that the state of the system can be fully described by a many body wave-
function: a wavefunction which is a function of the positions of each of the electrons
and nuclei in the system, which also depends on time.

Assuming that we have non-relativistic electrons, and the Born-Oppenheimer ap-
proximation (that electrons instantaneously relax into their ground-state with nuclei
movement) the Schrödinger equation one must solve is then [81, 82]

Ĥ�({r}; t) = i}d�({r}; t)
dt

, (2.1)
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and �({r}; t) = �({r})e≠iEt/} is a many-body eigenstate of a set of electrons at
{r} = {r1, . . . , ri, . . . rn}, the form of which depends on nuclei positions at RI . The
many-body Hamiltonian is Ĥ = T̂ + V̂ , where T̂ and V̂ are the kinetic energy (first
term in equation (2.2)) and potential operators. The second, third and fourth terms
in equation (2.2) correspond to the potential from electron-electron, electron-nucleus
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and nucleus-nucleus interactions. Hartree units have been used here (e = m = } =
4fi‘0 = 1).

A time-independent observable which has operator Ô, is given by the expectation
value with a particular eigenstate,

e
Ô

f
= È�|Ô|�Í

È�|�Í . (2.3)

The electronic density operator is defined as

fl̂(r) =
Nÿ

i=1
”(r ≠ ri), (2.4)

giving the expectation of the electron density as

fl(r) = È�|fl̂(r)|�Í
È�|�Í . (2.5)

The total energy is the expectation value of the many-body Hamiltonian Ĥ:

E = È�|Ĥ|�Í
È�|�Í (2.6)

=
e
T̂

f
+

e
V̂int

f
+

⁄
fl(r)Vextdr + EZZ ,

where
Vext(r) =

ÿ

I

≠ ZI

|r ≠ RI | (2.7)

is the external potential due to the Coulomb interaction between the electrons and
the nuclei. Vint is the electron-electron interaction energy and EZZ is the classical
electrostatic nucleus-nucleus interaction energy, which are expectation values of the
second and fourth terms in equation (2.2) respectively.

e
T̂

f
is the expectation value

of the electronic kinetic energy.
Stationary points in the total energy correspond to eigenstates of the many-body

Hamiltonian. To find these stationary points, one can vary È�|Ĥ|�Í subject to to the
constraint of orthonormality (È�|�Í = 1), which is possible with the use of Lagrange
multipliers. One finds that upon variation of the bra È�| that the ket must satisfy the
time-independent Schrödinger equation:

Ĥ |�nÍ = En |�nÍ , (2.8)
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where |�nÍ is an eigenstate. From hereon we shall only be looking for these stationary
eigenstates with time-independence.

Quite often, the state we would most like to find is the lowest energy state (ground
state) of the system, as this is the fundamental state which other mechanisms return
to or start from. To find this state for the full system, one must minimise the energy
with respect to the variables in the many-body wavefunction, while satisfying the
Schrödinger equation and appropriate symmetry constraints (e.g. for electrons, �
must be antisymmetric). This quickly leads to an explosion of complexity without
making approximations: to only describe the N = 22 electrons present in a single
titanium atom, using a grid of Np ◊Np ◊Np points, and taking a coarse grid Np = 10,
one would need to tabulate (N3

p)N = 1066 complex numbers to describe the electronic
wavefunction. Clearly, minimising a function of this complexity is impossible. To
make the problem tractable, we must make a few approximations.

2.2 Self-Consistent Mean-Field Theory
A major development on the path to tractable calculations is that of Hartree and
Hartree-Fock theory. An ansatz is made for the many-electron wavefunction, whereby
we assume it is a product state between single particle orbitals „i(ri). These orbitals
are the product of spatial function and a spin function. This reduces the complex-
ity to describe the wavefunction: we only need 3N ◊ N3

p numbers to describe the
wavefunction.

We will first treat the simple case, without accounting for antisymmetry of the
electronic wavefunction, with the ansatz

�({r}) = „1(r1)„1(r2) . . . „N(rN). (2.9)

We assume that electrons move in a mean-field: they are all in an e�ective potential,
which consists of the average Coulomb interaction of all other electrons in addition to
the potential from the nuclei Vext(r) [83]. Denoting the ith and jth electrons as r and
rÕ respectively, we have

Ve�(r) = Vext(r) +
⁄ fl(rÕ)

|r ≠ rÕ|drÕ, (2.10)

where fl(r) = q
i |„i(r)|2. This is the Hartree approximation.
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Upon making this approximation, one finds that the many-body Hamiltonian can
be expressed as a sum of single-particle Hamiltonians Ĥi = T̂i + V̂i pertaining to each
electron i:

A
ÿ

i

Ĥi

B

�({r}) =
A

ÿ

i

5
≠1

2Ò2
i

+ Ve�(r)
6B

�({r}) = E�({r}). (2.11)

One must minimise the functional

E[�] = È�|Ĥ|�Í
È�|�Í . (2.12)

by the variational principle to find the ground state. A functional is analogous to func-
tion: a function maps a variable to a number, whereas a functional maps a function
to a number. An orthonormal set of single-particle wavefunctions „n © |nÍ, min-
imise this functional. From these orbitals, we can obtain the expectation value of full
Hamiltonian to obtain the total energy.

The total energy in the Hartree approximation is given by [84]

EH. approx = T + Eext + EH, (2.13)

where the energy of the Hartree term EH is given by

EH = 1
2

ÿ

m

ÿ

n

fn

⁄ „ú
n
(r)„n(r)„ú

m
(rÕ)„m(rÕ)

|r ≠ rÕ| drdrÕ, (2.14)

and the energy from the external potential is

Eext =
ÿ

n

fn

⁄
„ú

n
(rÕ)„n(rÕ)Vext(rÕ)drÕ. (2.15)

The expectation value of the kinetic energy is given by

T =
ÿ

n

fn Èn|T̂ |nÍ =
ÿ

n

fn

⁄
„ú

n
(r) ≠ 1

2Ò2
n
„n(r)dr, (2.16)

where fn (included here for generality) is the occupancy of the eigenstate |nÍ, which
in the case of Hartree and Hartree-Fock theory, we take to be one.

To preserve the antisymmetry of the wavefunction, one must take the approach of
Hartree-Fock theory. We can reformulate the ansatz in equation (2.9) by taking the
Slater determinant of the orbitals, which imposes the required antisymmetry property
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of the wavefunction, giving

�({r}) = det („1(r1), „2(r2), . . . , „N(rN)) . (2.17)

This gives the e�ective potential in Hartree-Fock theory as

V HF
e� (r) = Vext(r) +

⁄ fl(rÕ) ≠ flHF
i

(r, rÕ)
|r ≠ rÕ| drÕ, (2.18)

where we see there is now a non-local term flHF
i

(r, rÕ) given as

flHF
i

(r, rÕ) =
ÿ

k

Î spin

„ú
k
(rÕ)„i(rÕ)„ú

i
(r)„k(r)

„ú
i
(rÕ)„i(rÕ) . (2.19)

This is the exchange charge density, which enforces Pauli exclusion for electrons. Only
a summation over parallel spins is necessary due to spin function orthogonality.

The Hartree-Fock total energy is given by [84]

EHF = T + Eext + EH + Ex, (2.20)

with the exchange energy as

Ex = ≠1
2

ÿ

m

ÿ

n

⁄ „ú
m

(rÕ)„ú
n
(r)„n(rÕ)„m(r)
|r ≠ rÕ| drdrÕ, (2.21)

where we see that exchange reduces the energy, as electrons of like spin are kept
automatically apart, lowering the energy from Coulomb repulsion. The exchange
energy also cancels the spurious self-interaction found in the Hartree energy, equation
(2.14), for each electron eigenstate (with a given spin). Electronic correlations from
e�ects other than exchange are not included in this theory.

With Hartree-Fock, there is still a vast amount of complexity, with typical calcula-
tions scaling as O(N4). In addition, Hartree-Fock predicts that metals are insulators,
with a singularity being found in the density of states at the Fermi energy due to the
long-range Coulomb interaction [85]. As such, we would like a description which has
better scaling, allowing for larger system sizes, while having a correct description of
metals, with the inclusion of correlation e�ects which are not soley from exchange.
We can achieve this with Density Functional Theory.
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2.3 Density Functional Theory
Hohenberg and Kohn’s seminal paper in 1964 [86] proved that there exists an energy
functional of the electron density which can provide the exact ground-state energy and
density upon minimisation. This reduces the number of variables to that of only 3N3

p

for any number of electrons N in the system of interest.
In 1965, Kohn and Sham [87] developed a formalism to practically calculate this

ground-state density via a set of self-consistent equations: the Kohn-Sham equations.
The main tenet of Density Functional Theory is: given a system that consists of

N electrons, there exists an energy functional of the local electron density E[fl(r)],
which corresponds to an antisymmetric wavefunction |�Í, which upon minimisation
by variation of the electron density, subject to the constraint that the number of
electrons is conserved ⁄

fl(r)dr = N, (2.22)

the resulting density is unique and the value of the functional is the ground-state
energy. To obtain this result we can go through the following theory.

Assuming fl(r) is the exact ground state density, and |�Í is a wavefunction, by the
variational principle we can write,

È�| T̂ + 1
2

ÿ

i

ÿ

j

1
|ri ≠ rj|

|�Í +
⁄

fl(r)Vext(r)dr Ø E0. (2.23)

where Vext(r) is the external potential due to electron-nuclei interactions and E0 is
the ground-state energy. The state |�Í may not be unique. To make it so, one can
subject equation (2.23) to the constraints that the number of electrons is conserved
and that fl is fixed [88]. This defines the functional:

F [fl] = min
�æfl

È�| T̂ + 1
2

ÿ

i

ÿ

j

1
|ri ≠ rj|

|�Í = T [fl] + Eee[fl], (2.24)

where the notation � æ fl is to show that the minimisation is with respect to all �
that can make the density fl.

The functional with the minimum value as the ground-state energy is then

E[fl] = F [fl] + Eext[fl], (2.25)
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where
Eext[fl] =

⁄
fl(r)Vext(r)dr, (2.26)

of which its functional derivative with respect to the density is Vext(r).
By the Euler-Lagrange equations, one finds that the ground state must satisfy

”F [fl]
”fl(r) + Vext(r) = µ, (2.27)

where µ is the corresponding Lagrange multiplier.
To actually find this density, one can use the Kohn-Sham equations to find a

self-consistent solution for the electron density [87]. To obtain the eigenvalues, one
can replace the problem of solving a fully-interacting electronic system, with a given
electronic density, by an auxiliary non-interacting electronic system which has the same
electronic density. The resulting eigenvectors can be used to find the expectation value
of the kinetic energy functional, Ts[fl], which corresponds to the kinetic energy of the
non-interacting (Kohn-Sham) system.

The Hohenberg-Kohn-Sham (HKS) functional can be defined as

EHKS[fl] = Ts[fl] + EH[fl] + Exc[fl] + Eext[fl] + EZZ, (2.28)

where
EH[fl] = 1

2

⁄ fl(r)fl(rÕ)
|r ≠ rÕ| drdrÕ, (2.29)

is the Hartree energy, Exc[fl] is the exchange-correlation energy and Ts[fl] is the kinetic
energy of the fictitious non-interacting auxiliary system acting in the same e�ective
potential Ve�[fl], where one can obtain Ts[fl] from equation (2.16). The assumption
made here is that the ground state density of the non-interacting, auxiliary system is
equal to that of the system with full electronic interactions.

This definition of the HKS functional redefines the exchange-correlation functional
Exc[fl]: the energy associated with Coulombic contributions from electron correlation
and exchange in addition to the di�erence between the true kinetic energy and that
of the non-interacting system. This gives the true exchange-correlation functional as

Exc[fl] =
3 e

T̂
f

≠ Ts[fl]
4

+
3 e

V̂int
f

≠ EH[fl]
4

, (2.30)

where we can interpret the first term as being the increase in kinetic energy from
electronic correlation in a fully interacting system, compared to a non-interacting
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one—correlations cause electrons to move to more energetically favourable areas of
the potential, thus increasing the kinetic energy. The second term is the di�erence in
energy between a system with full electron-electron interactions

1
V̂int = 1

2
q

r,rÕ
1

|r≠rÕ |

2
,

which includes exchange and correlation e�ects, and the standard Hartree energy,
which represents the energy purely from an electronic density, with no exchange-
correlation.

To solve the Kohn-sham equations, the following process can be performed. One
solves Poisson’s equation for the Hartree potential Ò2V in

H (r) = ≠4fiflin(r), given an
initial input density flin(r), which in the first iteration is a sum of atomic charge
densities. Then, the total e�ective potential for the system is constructed,

V in
e� (r) = V in

H (r) + V in
ext(r) + V in

xc (r). (2.31)

The set of single-particle Schrödinger equations (the Kohn-Sham equations) are sub-
sequently solved 5

≠1
2Ò2

n
+ V in

e� (rn)
6

„n(rn) = ‘n„n(rn), (2.32)

yielding the single-particle eigenstates (Kohn-Sham orbitals) from which a new elec-
tron density is found, flout(r) = q

n fn|„n(r)|2. This density can be put back into the
Poisson’s equation, giving a new V in

H (r), starting a new cycle to get a new flout(r).
Once the input and output densities are within some tolerance of each other, one can
say that the flout(r) = flexact(r), and the resulting total energy is the ground-state
energy.

2.3.1 From Density Functional Theory to Tight-Binding

One can apply perturbation theory to more closely understand the relationship be-
tween the input and output densities upon solving the Kohn-Sham equations (2.32).
We can expand the HKS functional, equation (2.28), to second order in deviations of
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the input density to obtain the second-order HKS functional [81]:

E(2)
HKS[fl] =

ÿ

n

fn Èn|Ĥ in|nÍ

≠
⁄

drflin(r)V in
xc (r) + Exc[flin] ≠ EH[flin] + EZZ

+ 1
2

⁄
dr

⁄
drÕ

I
”fl(r)”fl(rÕ)

|r ≠ rÕ|

+ ”fl(r) ”2Exc

”fl(r)”fl(rÕ)”fl(rÕ)
J

.

(2.33)

where, ”fl(r) = flout(r) ≠ flin(r). The first line represents the energy from the input
Hamiltonian, the second line subtracts the exchange-correlation energy from the first
term, to encapsulate all exchange-correlation e�ects in the second term on the second
line, the third term on the second line removes the Hartree contribution from the first
line, which is the double-counting correction term, with the final term on the second
line being the classical nucleus-nucleus interaction.

Minimising the above functional with respect to fl, furnishes us with the equation
one needs to solve for the ground-state:

Ĥ in |nÍ = (T̂ + V̂ (2)
e� ) |nÍ = ‘n |nÍ , (2.34)

where
V (2)

e� (r) = V in
e� (r) +

⁄ A
1

|r ≠ rÕ| + ”2Exc[fl]
”fl(r)”fl(rÕ)

----
flin(r)

B

”fl(rÕ)drÕ, (2.35)

Omitting the final two lines in equation (2.33), we obtain the first-order functional,
the Harris-Foulkes functional. This is the basis for the tight-binding bond model.

2.4 Tight Binding

2.4.1 The Tight-Binding Bond Model

As with many tight-binding models, we represent our Hamiltonian in a Linear Combi-
nation of Atomic Orbitals (LCAO) basis [89, 90]. These basis functions are localised
to a particular site R with an orbital described by angular momentum ¸ with magnetic
quantum number m. We shall denote this orbital by the composite index L, giving
the basis as |RLÍ.

To solve the single-particle Schrödinger equation, we first must convert equa-
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tion (2.34), into a matrix eigenvalue problem. Using the local orbitals we define
for tight-binding, one can expand the eigenstate with coe�cients Cn

RÕLÕ as |nÍ =
q

RÕLÕ Cn

RÕLÕ |RÕLÕÍ, which upon projection of ÈRL| gives

ÿ

RÕLÕ
HRLRÕLÕCn

RÕLÕ = ‘n

ÿ

RÕLÕ
SRLRÕLÕCn

RÕLÕ , (2.36)

where SRLRÕLÕ is the overlap matrix SRLRÕLÕ = ÈRL|RÕLÕÍ and HRLRÕLÕ are the Hamil-
tonian matrix elements. „RL(r) is the basis function of |RLÍ in the r-representation,
which gives matrix elements as

HRLRÕLÕ =
⁄

ÈRL|rÍ H(r) Èr|RÕLÕÍ dr =
⁄

„ú
RL

(r)H(r)„RÕLÕ(r)dr. (2.37)

Central to tight-binding are the numerous approximations one makes. The first,
is that we assume we can write the e�ective potential as a sum of atom-centred con-
tributions V̂e� = q

R V̂ (R)
e� . From this, one can represent the matrix element of the

e�ective potential as

ÈRL| V̂e� |RÕLÕÍ = ÈRL| V̂ (R)
e� |RÕLÕÍ + ÈRL| V̂ (RÕ)

e� |RÕLÕÍ +
ÿ

RÕÕ ”=RÕ,R
ÈRL| V̂ (RÕÕ)

e� |RÕLÕÍ ,

(2.38)
We take the two-centre approximation for the Hamiltonian matrix elements in this
thesis: where the final summation in equation (2.38), is dropped, which has the e�ect of
removing an environmental dependence of the matrix elements. The matrix elements
of the kinetic energy operator T̂ are two-centre terms, as can be easily seen.

The two-centre Hamiltonian matrix elements are generated by use of the Slater-
Koster relations [91], which provide the angular dependencies of the atomic orbitals
in the LCAO basis, in conjunction with the distance dependencies of these matrix
elements, which are given by fundamental bond integrals V¸¸Õm(r). These are the pa-
rameterised functions which describe the distance dependence r of the bonding orbital
m, between atomic orbitals ¸ and ¸Õ, as seen in figure 2.1. One can parameterise
the elements of the S matrix in the same way, using the Slater-Koster relations and
distance dependences given by some function S¸¸Õm(r).
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Fig. 2.1: Fundamental bond integrals, V¸¸Õm(r), between atomic orbitals [89, 92].

The diagonal elements of the Hamiltonian in equation (2.36), HRLRL correspond to
on-site terms. These are simply the energy of a particular orbital e.g. ‘s, ‘p, ‘d for the
s, p and d orbitals. These are parameters along with the assumed orbital occupancies
of the free atoms NR¸. O�-diagonal terms between di�erent sites, HRLRÕLÕ , correspond
to the potential of overlapping atomic orbitals on di�erent sites, as given by the Slater-
Koster rules.

Given the matrix elements, prior to solving anything, there are useful quantities
to define. An operator Â, can have expansion coe�cients related to the local orbitals
by

ARLRÕ
L

Õ =
ÿ

RÕÕLÕÕRÕÕÕLÕÕÕ
S≠1

RLRÕÕLÕÕ ÈRÕÕLÕÕ| Â |RÕÕÕLÕÕÕÍ S≠1
RÕÕÕLÕÕÕRÕLÕ , (2.39)

The expression for the expansion coe�cients are similar to that of matrix elements
ARLRÕLÕ = ÈRL| Â |RÕLÕÍ, but are only equivalent if S = I, which is an orthogonal
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tight-binding model: the type of models we will encounter in this thesis. One can
interpret the overlap matrix as a quantity akin to the metric tensor as in General
Relativity, where the action of it is to raise/lower indices, changing between covariance
and contravariance [93].

We can obtain the electron density as

fl(r) =
ÿ

RLRÕLÕ
Èr|RLÍ flRLRÕ

L
Õ ÈRÕLÕ|rÍ , (2.40)

where
flRLRÕ

L
Õ =

ÿ

n

fnCn

RL
Cnú

RÕLÕ , (2.41)

are the expansion coe�cients of the density operator

fl̂ =
ÿ

n

fn |nÍ Èn| . (2.42)

where fn is the occupancy. This occupancy can be given by 2fF(‘n), where fF is
the Fermi distribution function, assuming spin degeneracy. At 0K we have fn given
by zero or one. In collinear magnetism at 0K, we have the occupancy dependent on
spin f‡

n
, which has values either zero or one, as such there are two density matrices

constructed.
We can define Mulliken charges on a site as

qR =
ÿ

RL

flRLRL + 1
2

ÿ

LLÕ

1
flRLRÕ

L
Õ
ORÕLÕRL + flRÕ

L
ÕRLORLRÕLÕ

2

(2.43)

where O = S ≠ I.
The band energy is then given by,

Eband = Trfl̂Ĥ =
ÿ

n

fn‘n, (2.44)

This band energy is the sum of the electron kinetic energies and electron-ion interaction
energies, which is the first term in the functional, equation (2.33).

To obtain more insight into systems using tight-binding, can define the cohesive
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energy, Ecoh = Etot ≠Efree, where Efree is the energy of free atoms prior to bonding and
Etot is the energy which comes, at the moment, from the Harris-Foulkes functional,
the first two lines in equation (2.33). One can partition cohesive energy to understand
the di�erent energy contributions apparent when atoms undergo bonding, which is the
central result of the tight-binding approximation [81, 94]

Ecoh = Ecov + Eprom + Ecf + Epolar + Emb + Erep, (2.45)

where the terms will be explained below.
One must first account for the energy in going from free atoms, in which electrons

are allowed to spin-polarise due to Hund’s rule, to that of an atom which is not spin-
polarised. Then we prepare the electrons for bonding in the solid by the promotion
energy Eprom

Eprom =
ÿ

RL

Ó
qRL ≠ N free

R¸

Ô
‘¸ (2.46)

where we redistribute charge from the initial occupancies of the orbitals NR¸ to the
orbitals appropriate for bonding. Here, qRL = q

RÕLÕ flRLRÕ
L

Õ
SRÕLÕRL. Then we bring

the atoms together and do not allow for hybridisation. The on-site energies of the
atoms change as the potential the electrons experience is not just the potential of the
free atom, but also the local atomic environment: this is the crystal-field splitting
term Ecf

Ecf =
ÿ

RL

qRL (HRLRL ≠ ‘¸) . (2.47)

Allowing for hybridisation of the orbitals on each of the sites gives the polarisation
energy Epolar

Epolar =
ÿ

RLRLÕ
flRLRL

Õ 1
HRLRLÕ ≠ ”RL

RLÕHRLRL

2
, (2.48)

Then, allowing for hybridisation of orbitals localized at di�erent sites, we gain the
covalent bond energy Ecov,

Ecov =
ÿ

RLRL
Õ

R ”=RÕ

flRLRÕ
L

Õ (HRÕLÕRL ≠ SRÕLÕRLHRLRL) . (2.49)

We have the small many body energy term given by Emb and Erep is the sum of the
pair potential contribution to the double counting term with the ion-ion interaction.

Here, we can see that the band energy consists of Eband = Ecov + Eprom + Efree.
In tight-binding, one usually uses a pair potential to approximate the other terms,
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Epair ¥ Ecf + Epolar + Emb + Erep, if there are no extra additions to the model. This
gives the cohesive energy from tight-binding, to first order

E(1)
coh = Ecov + Eprom + Epair. (2.50)

This is the tight-binding bond model, as developed by Sutton et al. [90]. Using this
scheme for tight-binding, a condition is imposed: that atoms should be charge-neutral.
This local charge neutrality condition is a reasonable approximation to make in metallic
systems due to the strong screening of conduction electrons. It is not satisfied after
a näive first calculation: on analysis of the resulting charges from the output density
matrix, one finds a redistribution of charge which can lead to inconsistencies, such as
non-conservation of charge and insu�cient potential variation from flowing charges [89,
90]. Imposing local charge neutrality introduces an elementary form of self-consistency,
whereby HRLRL, the on-site matrix elements of the Hamiltonian—the energies of each
atom—are changed iteratively until the change in the resulting local atomic charges is
approximately zero. This results in the satisfaction of the force theorem, which states
that there is no contribution to the force upon a self-consistent redistribution of the
charge following a virtual displacement of an atom [90, 95, 96].

2.4.2 Self-Consistent Polarisable-Ion Tight-Binding

The approximation of local charge neutrality for atoms as a basic form of self-consistency
is well satisfied for bulk metals, as one expects a large amount of screening of metallic
ions from the conduction electrons. This is not the case for solids composed of atoms
with very di�erent electronegativities, or metal surfaces, as there will be large charge
transfers [81, 89, 97]. Allowing for these charges, there will be an electrostatic inter-
action between atoms which distorts the orbitals, breaking their spherical symmetry,
resulting in charge polarisation.

To account for charge transfer and charge polarisation within tight-binding, one
can introduce the e�ect of the second-order term in the second-order HKS functional,
equation (2.33), which we will denote as E2

E2 =
⁄

drdrÕ”fl(r)”fl(rÕ)
A

1
|r ≠ rÕ| + ”2Exc

”fl(r)”fl(rÕ)

B

=
⁄

drdrÕ”fl(r)”fl(rÕ)Cin(r, rÕ),

(2.51)
This term describes the change in the Hartree and exchange-correlation potentials
to first order in the change of the charge density. By adding this term, one must
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self-consistently solve the Schrödinger equation, as there is now the term V e�
2 =

s
drÕ”fl(rÕ)Cin(r, rÕ), the second term in equation (2.35), in the e�ective potential which

itself is a functional of the density.
To describe monopoles of charge, we can start by developing the self-consistent

charge transfer model (SCTM), approximating E2 as

ESCTM
2 = 1

2
ÿ

R
UR”q2

R + 1
2

ÿ

RÕ ”=R
URRÕ”qR”qRÕ , (2.52)

resulting in the Hamiltonian

HSCTM
RLRÕLÕ = H in

RLRÕLÕ +
Q

aUR”qR +
ÿ

RÕ ”=R
URRÕ”qRÕ

R

b ”RRÕ”LLÕ , (2.53)

for an orthogonal model, where we have assumed that the induced charges at each site
are well-described by the change in the Mulliken charges at those sites ”qR = qR ≠ qin

R.
These terms only change the on-site energies of the Hamiltonian. We have defined a
Hubbard U parameter UR, which is a penalty for the addition of charge to a site. We
assume this parameter is constant in tight-binding. URRÕ = 1/|R≠RÕ| is the standard
Coulomb term relating the change in the Coulomb energy due to the change in atom-
centred charges. ”LLÕ and ”RRÕ are Kronecker deltas. H in

RLRÕLÕ is the Hamiltonian
matrix which comes from the standard two-centre construction, as in the tight-binding
bond model.

To include the e�ect of charge polarisation, we need self-consistent Polarisable-Ion
tight-binding (PITB). Assuming the basis functions of tight-binding are composed of
a radial and a spherical part:

Èr|RLÍ = fRL(|r ≠ R|)YL(◊, „), (2.54)

and inserting the expression for the expansion of the density, equation (2.40), into
equation (2.51), and di�erentiating with respect to the wavefunction coe�cients, one
finds the Hamiltonian as [81]

HPITB
RLRÕLÕ = H in

RLRÕLÕ +
ÿ

RÕÕLÕÕRÕÕÕLÕÕÕ
CRLRÕLÕRÕÕLÕÕRÕÕÕLÕÕÕ

1
flRÕÕ

L
ÕÕRÕÕÕ

L
ÕÕÕ ≠ flRÕÕ

L
ÕÕRÕÕ

L
ÕÕ

RÕÕ

2
,

(2.55)
where flRÕÕ

L
ÕÕRÕÕ

L
ÕÕ

RÕÕ is subscripted with RÕÕ to emphasise these are atom-centred charges.
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This general Hamiltonian provides us with a plethora of matrix elements to account
for the response of the system to changes in the charge density. Of note are the on-site
terms which relate di�erent orbitals together, L ”= LÕ. These are polarisation terms,
which provide distortions to the orbitals due to the electrostatic interactions.

In free atoms, the atomic orbital basis is spherically symmetric, as they include
the spherical harmonic terms YL(◊, „). In a solid, there is much lower symmetry,
generally the point group of the solid. This reduction in symmetry induces a splitting
of the energy levels, coming from the crystal field, which arises from potential of the
neighbours and the resulting polarisation of the charge. To describe the reaction of
these orbitals to the symmetry of the potential, one can incorporate on-site matrix
elements between di�erent orbitals on a site, induced by the surrounding charges,
causing distortion away from spherical symmetry. We do not include the simple crystal
field terms, related to the change in on-site energies upon insertion into the crystal—
these are still swept into the pair potential.

There are also o�-site matrix elements which respond to changes in the charge
density. These terms are able to be parameterised to include the e�ects of exchange
to remove self-interaction, and even non-local correlation e�ects [81].

In order to keep the number of parameters to a minimum, we will omit the con-
tribution of the o�-site, o�-diagonal contributions to the matrix elements. Thus, we
want to only include the e�ect of on-site, o�-diagonal terms. We can extend the SCTM
model to do this.

One can expand the Coulomb term in equation (2.52), in charge multipoles, while
keeping the Hubbard U as the monopole (Q0(R) © ”qR), which results in

EPITB
2 = 1

2
ÿ

R
UR”q2

R + 1
2

ÿ

RLRÕLÕR ”=RÕ
QL(RI)BLLÕ(R, RÕ)QLÕ(RÕ), (2.56)

where QL(R) is a charge multipole which is defined as QL(R) =
s

drfl(r)r¸YL(r), the
BLLÕ(R, RÕ) are coe�cients defined by

BLLÕ(R, RÕ) = 16fi2 ÿ

LÕÕ
(≠1)¸

(2¸ÕÕ ≠ 1)!!
(2¸ + 1)!!(2¸Õ + 1)!!CLÕLLÕÕKLÕÕ(|R ≠ RÕ|), (2.57)

where KLÕÕ(R) = R≠¸≠1YL(◊, „) are solid Hankel functions, CLÕLLÕÕ =
ss

d�YLÕYLYLÕÕ

are Gaunt coe�cients, and the summation is restricted such that LÕÕ = L + LÕ, with ¸

being the multipole component of interest, from the L = (l, m) combined index.
To restrict the number of parameters which would result from equation (2.56), we
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can expand QL(R) in terms of the charge density and real spherical harmonics, to
obtain

QL(R) =
ÿ

LLÕ
flRLRL

Õ�R
¸Õ¸¸ÕÕCR

LÕLLÕÕ , (2.58)

where �R
¸Õ¸¸ÕÕ are coupling strengths, which are the new parameters. We restrict the

number of �R
¸Õ¸¸ÕÕ necessary by the symmetries of the Gaunt coe�cients, resulting in

seven new coe�cients for an s, p, d basis,

�R
spp

, �R
ppd

, �R
sdd

, �R
pdp

, �R
ddd

, �R
pdf

, �R
ddg

. (2.59)

This gives the Hamiltonian for an orthogonal PITB model as

HPITB
RLRÕLÕ =H in

RLRÕLÕ + UR”qR”RRÕ”LLÕ

+
ÿ

RÕÕ ”=R

ÿ

LLÕ

A
ÿ

LÕÕLÕÕÕ
�R

¸ÕÕ¸¸ÕÕÕCR
LÕÕLLÕÕÕ

B

BLLÕ(R, RÕÕ)QLÕ(RÕÕ)”RRÕ . (2.60)

2.4.3 Stoner Magnetism

Magnetism must be taken into account in materials where it is exhibited, such as iron.
It has been shown to explain the stability of di�erent iron phases [98, 99]. This e�ect
can be introduced into tight-binding by use of Stoner’s model of itinerant magnetism
[100–102].

We will not delve into the theory of itinerant magnetism in-depth in this thesis,
but the reader is directed to Paxton and Finnis [103] and Pettifor [104] both of whom
detail Stoner’s theory in the context of tight-binding descriptions of transition met-
als. To keep it brief, one must solve the Schrödinger equation for both minority and
majority spins, obtaining two density matrices: fl+ and fl≠ for spin-up and spin-down
electrons respectively. The di�erence in these densities gives the magnetic moment
”m = fl+ ≠ fl≠. The Stoner parameter I is a fitted parameter which controls the
exchange splitting. There is an extra contribution to the energy, Emag = ”T ≠ 1

4I”m2,
where ”T is the change in electron kinetic energy. For ferromagnetic states, there is
an increase in the electron kinetic energy, by spin-down states, which are just below
the nonmagnetic Fermi level, flipping to spin-up states, which must occupy states
above the nonmagnetic Fermi level. This leads to the Stoner criterion of spontaneous
ferromagnetic order

ID(EF) > 1, (2.61)

33



Theory

where D(EF) is the nonmagnetic density of states per spin.
All calculations with magnetism in this thesis start from a ferromagnetic ground-

state.

2.4.4 Forces

To obtain the forces from tight-binding, one must take the derivative of the cohesive
energy with respect to ion position. A small change in the position of an ion at R,
”R gives a change in the total energy ”Etot of [81]

”Etot = ˆEtot

ˆR

----
{C

n
RL}

· ”R +
ÿ

nRÕLÕ

ˆEtot

ˆCn

RÕLÕ

----
R

”Cn

RÕLÕ , (2.62)

where ˆEtot
ˆR is the vector gradient with respect to the components of the ion position

ˆEtot

ˆR ©
A

ˆEtot

ˆRx

,
ˆEtot

ˆRy

,
ˆEtot

ˆRz

B

. (2.63)

The term ˆEtot
ˆC

n
RÕLÕ

is the change in the total energy with respect to the wavefunction
coe�cients, where the change in the wavefunction coe�cient is constrained to those
which satisfy the matrix eigenvalue equation (2.36) and the normalisation condition,
q

RLRÕLÕ Cnú
RL

Cn

RÕLSRÕLÕRL = 1. Considering these constraints, one finds [81]

ˆEtot

ˆCn

RÕLÕ

----
R

=
ÿ

nRÕLÕRÕÕLÕÕ
fn‘nCnú

RÕLÕ
ˆSRÕLÕRÕÕLÕÕ

ˆR Cn

RÕÕLÕÕ · ”R. (2.64)

The total energy in the tight-binding bond model is given as Etot = Ecov + Eprom +
Efree + Epair = Eband + Epair. The derivative of the pair potential is trivial, as it is
an analytic function. To evaluate the derivative of the band energy, equation (2.44),
we make use of the Hellmann-Feynman Theorem [105, 106], where the derivative of
the band energy is given by the expectation value of derivative of the Hamiltionian
operator

ˆEband

ˆR

----
{C

n
RL}

=
ÿ

nRLRÕLÕ
fn‘nCnú

RÕLÕCn

RL
ÈRÕLÕ| ˆ

ˆR Ĥ in |RLÍ , (2.65)

We know only the dependence of the parameterised terms in tight-binding: the
matrix elements HRÕLÕ,RL(R), and the overlap matrix SRÕLÕ,RL(R). Therefore, to
obtain the expectation of the derivative of the Hamiltionian operator in equation
(2.65), we can use the full expression for the derivative of a matrix element from the
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Hellmann-Feynman theorem to furnish us with quantities we know how to calculate

ˆ

ˆRH in
RÕLÕRL

= ÈRÕLÕ| ˆ

ˆR Ĥ in |RLÍ + È ˆ

ˆRRÕLÕ| Ĥ in |RLÍ

+ ÈRÕLÕ| Ĥ in | ˆ

ˆRRLÍ (2.66)

Rearranging (2.66) to obtain an expression for ÈRÕLÕ| ˆ

ˆRĤ in |RLÍ one obtains from
equation (2.65),

ˆEband

ˆR

----
{C

n
RL}

=
ÿ

nRLRÕLÕ
fn‘nCnú

RÕLÕCn

RL

C
ˆ

ˆRH in
RÕLÕRL

≠ È ˆ

ˆRRÕLÕ| Ĥ in |RLÍ

≠ ÈRÕLÕ| Ĥ in | ˆ

ˆRRLÍ
D

(2.67)

which after some manipulation by expanding the terms, and using the identity ˆSRÕLÕRL
ˆR =

È ˆ

ˆRRÕLÕ|RLÍ + ÈRÕLÕ| ˆ

ˆRRLÍ leads to [107]

ˆEband

ˆR

----
{C

n
RL}

=
ÿ

RLRÕLÕRÕ ”=R
flRLRÕ

L
Õ
C

ˆH in
RÕLÕRL

ˆR ≠ ‘n

ˆSRÕLÕRL

ˆR

D

, (2.68)

giving the necessary terms to evaluate the force.
In the tight-binding bond model, there is no contribution to the force from the

on-site elements due to the condition of local charge neutrality [81, 89]. Therefore,
one obtains the force in an orthogonal model as [81]

F TBBM
R = ≠

ÿ

LRÕLÕRÕ ”=R
flRLRÕ

L
Õ ˆH in

RÕLÕRL

ˆR ≠
ÿ

RÕ ”=R

ˆVpair

ˆR , (2.69)

where Vpair is the pair potential.
For an orthogonal SCTM model, one includes the on-site terms again, giving

F SCTM
R = ≠

ÿ

LLÕ
flRLRL

Õ ˆH in
RÕLÕRL

ˆR ≠
ÿ

LRÕLÕRÕ ”=R
flRLRÕ

L
Õ ˆH in

RÕLÕRL

ˆR

≠
ÿ

RÕ ”=R

ˆVpair

ˆR ≠
ÿ

RÕ
”qR”qRÕ

R ≠ RÕ

|R ≠ RÕ|3 , (2.70)
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For an orthogonal PITB model, one obtains

F PITB
R = ≠

ÿ

LLÕ
flRLRL

Õ ˆH in
RÕLÕRL

ˆR ≠
ÿ

LRÕLÕRÕ ”=R
flRLRÕ

L
Õ ˆH in

RÕLÕRL

ˆR

≠
ÿ

RÕ ”=R

ˆVpair

ˆR ≠
ÿ

L

QRLÒVRL. (2.71)

where the derivative of the final term is easily evaluated from the derivative of the
structure constant matrix (2.57), which is composed of analytic Hankel functions.

2.5 Saddle Search Methods
In many physics models, one wants to find configurations of the system which have the
lowest energy, when starting from an initial configuration. In terms of the potential
energy surface of the system, these states are wells, corresponding to a local minimum
in configuration space. It is common in systems of multiple dimensions to have many
local minima, and in real systems, one sees there are transitions between local minima
due to thermal activation. In such cases, one might ask the question, what is the
rate of transition between these states? To answer this, one can use the machinery of
transition-state theory [108], in which the harmonic approximation of Vineyard [109]
can be used to obtain the attempt frequency ‹ú, which is the prefactor for the rate
of transition, given by the Arrhenius expression � = ‹ú exp{≠�E/kBT}. However to
obtain ‹ú and the energy barrier �E, we must first obtain the transition state between
the two systems.
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Fig. 2.2: Diagram of minimum energy pathway between two local minima A and B, the
black line, on a potential energy surface, the orange contours. The saddle point
S is given where the dashed line meets the black line. Function shown is of
(1 ≠ x

2 ≠ y
2)2 + y

2
/(x2 + y

2), where the minimum energy pathway (MEP) is a
unit circle.

The point on the potential energy surface which corresponds to the smallest barrier
along the minimum energy path (MEP) between the two minima is necessarily a saddle
point: from it, the potential energy should increase for all degrees of freedom bar that
which pertains to transition between the states, along which the energy decreases in
both directions. This can be visualised in figure 2.2.

To find these saddle points between two minima, one can use methods such as the
Nudged-Elastic Band method [110] and the String method [111, 112], where the latter
method is a special case of the former. Here we follow the notation of Makri et al.
[113].

Given a potential V (x), which has two minima at xA and xB, we wish to obtain
the saddle point between them xS, which corresponds to the maximum of a minimum
energy path on the potential energy surface between these minima. To obtain this,
we can parameterise the path between the two endpoints as xú(s), where s œ [0, 1]
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with xú(0) = xA and xú(1) = xB. The minimum energy path between the endpoints
is defined by the equation

Ò‹V (xú) © 0, (2.72)

where Ò‹V (x) =
3

1 ≠ xÕ

||xÕ || ¢ xÕ

||xÕ ||

4
ÒV (x) is the force perpendicular to the path

direction, and xÕ = dx
ds

. We denote the second derivative with respect to s as xÕÕ = d2x
ds2 ,

with double vertical bars denoting the norm of the vector.
To find this minimum energy path, we can initially take N discrete points in

configuration space, labelled xn between the endpoints, N images, from which we can
sample the potential energy surface.

In the NEB method, we introduce spring forces ÷
n

which act between the images
along the line of the path. These act to keep images distributed evenly along the path
in configurational space.

To optimise the minimum energy path, one can introduce a pseudo-temporal co-
ordinate · , which we make equivalent to the force F © dx

d·
, so we wish to solve the

system of ODEs
F © dxn

d·
= ≠Ò‹V (xn) + ÷

n
(xÕ

n
, xÕÕ

n
) (2.73)

where in the case of NEB, we have

÷NEB
n

(xÕ

n
, xÕÕ

n
) = Ÿ

A

xÕÕ

n
· xÕ

n

||xn||

B
xÕ

n

||xn|| , (2.74)

where Ÿ is the spring constant, and for the string method, we have ÷string
n

= 0.
Then one can evolve the system of images by using an appropriate solver. Using

Euler’s method, one finds the usual update at iteration k of,

xk+1
n

= xk

n
+ –k

Ë
≠Ò‹V (xn) + ÷k

n
(xk

Õ

n
, xk

ÕÕ

n
)
È

, (2.75)

where –k is the timestep at iteration k. We can evolve the images until the maximum
root mean square di�erence of the forces from equation (2.73) between iterations, are
below some specified tolerance.

2.6 Dislocations
To understand the deformation characteristics of materials, one must understand dislo-
cations, the fundamental defects which control plasticity. Dislocations are line defects
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in the crystal structure of a material. They allow for the flow and accumulation of
plasticity through glide and multiplication.

One can imagine a dislocation in an isotropic continua, as in figure 2.3. If one
applies a shear stress to the material, deformation may occur. In figure 2.3, one sees
that this displacement is along the y direction, by the vector b = bŷ relative to the
perfect crystal, and the displacement is of the material is bounded by the blue-red
line. This is the dislocation line.

The Burgers vector b, defines the dislocation, and it is an invariant quantity along
the dislocation line. It can be determined by taking a Burgers circuit: integrating
the displacement around the dislocation line in a closed loop and comparing that to
the perfect lattice. The convention taken in this thesis is “FS/RH” convention [7],
where a clockwise circuit is taken around a dislocation with a line-sense that goes into
the page. The Burgers vector is the di�erence of the final position from the initial,
when the same path has been taken on a perfect lattice. Dislocation character can
be determined by the line-sense ›, and the Burgers vector. There are two possible
characters of pure dislocations, edge (as seen in blue, denoted by the symbol ‹) where
the Burgers vector is perpendicular to the line-sense, and screw (as seen in red, denoted
by the symbol §) where the Burgers vector is parallel to the line-sense. Between these
characters we have mixed dislocations, given by the purple region between the two.

The glide plane of a dislocation is that which contains both the Burgers vector
and the line-sense. Edge dislocations can only glide in one plane, the plane in which
it was formed. However the glide plane for screw dislocations is ambiguous, and in
fact, screw dislocations can glide in any close-packed plane. When a screw dislocation
changes glide plane, it is said to have undergone cross-slip.
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Fig. 2.3: Diagram showing edge and screw dislocation as part of the whole dislocation line.
Blue to red gradient shows the dislocation line character, which changes from pure
edge (blue) to pure screw (red). When the shear stress ‡ is imposed, glide of pure
screw segments occurs along the x direction, with pure edge segments gliding on
the y direction. Dislocation which has undergone glide is given by the dotted line,
with the same gradient colour scheme.

The movement of dislocations can occur by application of stress above a critical
value, which causes segments of the dislocation line to move. If one applies a large
enough shear stress ‡, in figure 2.3, the pure screw segments, the red part of line, can
glide along the x direction, and the edge segments, the blue part of the line, can glide
along the y direction, causing the dislocation line to move (dashed blue-red line). The
general equation for the force per unit length on a dislocation, from an applied stress
‡, is the Peach-Koehler force

F = (‡ · b) ◊ ›. (2.76)

In real materials, the stress necessary to cause dislocation glide depends on the
character of the dislocation, the crystal structure, the elements which compose the
crystal and impurity content. The nature of dislocation glide is also not smooth,
as suggested by the isotropic continua diagram. This is due to the oscillating energy
landscape in which a dislocation resides, of which is generated from atomic potentials of
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the deformed crystal structure: the Peierls potential. Without stress, dislocations will
reside in valleys of this potential, which correspond to zone axes of the crystal: between
rows of atoms. Dislocations glide by the movement of a dislocation segment into a
neighbouring Peierls valley by a kink-pair mechanism, as seen in figure 1.2, left. This
occurs by a segment of the dislocation line having gained enough energy, from thermal
activation or a lowering of the Peierls potential by application of stress, to overcome
the Peierls barrier. This creates a kink-pair, where two new segments of dislocation,
which have opposite signs, are formed in the glide plane of the dislocation, which adjoin
the pioneering segment which has undergone migration to the next valley, as shown in
the diagram in figure 2.4. If the kink-pair formed is stable—if the oppositely signed
dislocations do not come together and annihilate—the kinks may migrate along the
length of the dislocation line, which causes the whole of the dislocation line to move
to the next Peierls valley.

Fig. 2.4: Diagram of jogs and kinks on a screw dislocation with edge segments in blue and
screw segments in red.

Segments of the dislocation line may also be formed which are not in the glide plane
of the dislocation. These segments are called jogs, and can be formed under thermal
activation or by interactions, as seen in figure 2.4. Large jogs, those of multiple atomic
spacings in length, are called superjogs. For edge dislocations, jogs are just edge
dislocations, and movement along the initial glide plane is uninhibited. However, jogs
on screw dislocations (relative to a particular glide plane of interest) create segments
of edge character in which the applied stress necessary to move them is perpendicular
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to that which enacts screw dislocation glide. This can severely inhibit the motion of
screw dislocations, thus causing an increase in lattice friction and strengthening.

2.7 Anisotropic Elasticity
Defects in materials cause deformations in the parent material, which can lead to long-
ranged interactions. Given deformations which are su�ciently small in magnitude,
such that the gradients in displacement are not too large, the stresses generated by
these defects can be well-described by linear elasticity theory. Here we follow the book
of Sutton [114], with slight changes in notation for consistency with Stroh [115] and
Hirth and Lothe [7].

Given an arbitrary point xÕ in a material with a defect, there will be a displacement
of the material u = xÕ ≠ x from its perfect state x. Within linear elasticity, if the
displacement gradient around the point is assumed to be small, one can define a
Lagrangian strain tensor

Ákl = 1
2

A
ˆuk

ˆxl

+ ˆul

ˆxk

B

. (2.77)

The strain field generated from the defect can be related to a stress through Hooke’s
law,

‡ij = CijklÁkl, (2.78)

where ‡ij is the stress tensor and Cijkl is the elastic constant tensor. The Einstein
summation convention, where it is implied that repeated indices are summed over, is
used here throughout the rest of this section. A particular component of the stress
tensor is the force per unit area, which acts through a particular area, in a particular
direction.

Consider a region R, bounded by a surface S, within a body. For each infinitesimal
volume element in R, one can state there is a force acting on that element, a body
force f , which is a force per unit volume: a typical example of a body force is that
of gravity. These forces cause the material around R to deform in response. Under
mechanical equilibrium, the sum of the body forces acting within R, must be balanced
by the stresses which act through the surface S, which were generated in response to
the body forces. This results in the stress tensor at every point in the body satisfying
the equation,

ˆ‡ij

ˆxj

+ fi = 0, (2.79)
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where fi is a component of a body force, within R. Under the requirement of no
resultant torque at equilibrium—conservation of angular momentum—the stress tensor
becomes symmetric.

To simulate dislocations, one must be able to calculate the displacement field which
defines them. This can be achieved with the anisotropic elasticity solutions. Here, we
use the extended formalism as developed by Stroh [115] following the notation of Hirth
and Lothe [7].

A dislocation is a line defect. The direction of the line can be defined by a unit
vector › which is the line sense. Orthogonal vectors to this line sense can be defined,
m and n, where n defines the cut-plane normal of the dislocation, and m is a vector
in the cut plane, where › = m ◊ n.

From the definition of the strain tensor, equation (2.77), and by use of Hooke’s
law, equation (2.78), one wishes to find the displacements of

‡ij = Cijkl

ˆuk

ˆxl

, (2.80)

where the indexes i, j, k, l = 1, 2, 3. We consider only the internal strain in the body,
and therefore take the body force acting per unit volume as zero, reducing the equation
for mechanical equilibrium, equation (2.79), to ˆ‡ij

ˆxj
= 0, which in conjunction with

equation (2.80), gives the equations we can solve for the displacements

Cijkl

ˆ2uk

ˆxjˆxl

= 0. (2.81)

To solve equation (2.81), we can seek trial solutions for u of the form

u = Af(÷), (2.82)

where A is a vector and f(z) is an analytic function of the complex variable z, which
will be defined later. ÷ is defined as

÷ = m · x + pn · x. (2.83)

We define a shorthand notation: given two vectors a and b, the matrix (ab) is defined
by (ab)jk = aiCijklbl. Using this notation, we see equation (2.82) is a solution if A
satisfies Ó

(mm) + [(mn + nm)] p + (nn)p2
Ô

A = 0, (2.84)
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Non-trivial solutions for A can be determined if p is a root of the sextic equation

det
1
(mm) + [(mn + nm)] p + (nn)p2

2
= 0. (2.85)

The roots of this equation are complex, giving three roots with their complex conjugate
pairs. The three roots with positive imaginary components are denoted by p–, – =
1, 2, 3, with their complex conjugates as p–, – = 4, 5, 6. The value of A obtained by
the root p– is hereon denoted by A– and similarly for other quantities.

Related to A– is the quantity L–, given by

L– = ≠ [(nm) + p–(nn)] A–, (2.86)

which obey the orthogonality relations

2A– · L– = 1, (2.87)

for each –.
Along the cut plane of a dislocation, considering a component of the displacement

uk there is, by definition, a discontinuity in the displacement which is equal to the
Burgers vector component bk. Considering the form of the function f(÷), one finds
that the form for f(÷) which is commensurate with real dislocations is

f(÷–) = D(–)
2fii

ln(÷–), (2.88)

where D(–) is a constant.
These D(–) can be determined from the orthogonality relations, equation (2.87),

and from the boundary conditions related to the discontinuity of the Burgers vector
and the requirement of no force to be found at the core of the dislocation

6ÿ

–=1
±D(–)A– = b, (2.89)

6ÿ

–=1
±D(–)L– = 0, (2.90)

where ± is defined by the sign of the imaginary component of the corresponding p–.
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These relations produce D(–) by the equation

D(–) = ±L– · b. (2.91)

With this, the displacements are fully determined by

u = 1
2fii

6ÿ

–=1
D(–)A– ln ÷–, (2.92)

from which the distortion tensor can be found

ˆuk

ˆxl

= 1
2fii

6ÿ

–=1
± [ml + p–nl] A–k [L– · b] 1

÷–

, (2.93)

which relate to the stresses by Hooke’s law (2.78)

‡ij = 1
2fii

6ÿ

–=1
±Cijkl [ml + p–nl] A–k [L– · b] 1

÷–

, (2.94)

The force along the cut-plane of the dislocation is given by resolved stress

‡ · n = ≠ 1
2fii

6ÿ

–=1
±L– [L– · b] 1

m · x . (2.95)

To create the dislocation, work is done against this force to create the displacement
discontinuity b. The work done per unit length is given by b·‡ ·n/2 in linear elasticity,
giving

W

L
= ≠ 1

4fii

A 6ÿ

–=1
[b · L] [L · b]

B

ln R

Rc

, (2.96)

where R is the radius around the dislocation considered and Rc is the core radius.
This gives the energy-coe�cient tensor, for the logarithmic prefactor, as the tensor
product of the L– vectors

K = i
6ÿ

–=1
±L–kL–l. (2.97)
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Chapter 3

Fitting tight-binding models of
titanium systems

3.1 Introduction
To describe and predict the properties of fundamental defects controlling plasticity
in titanium, one can fit simple quantum mechanical models, such as tight-binding
models, to describe atomic interactions. This allows for an explicit description of
atomic bonding due to electronic structure, which is vital for defect structures and
energies, quantities which empirical potentials have di�culty reproducing [116–118].
In addition, tight-binding methods have better scalability than DFT, due to a many-
fold reduction of the O(N3) scaling prefactor, allowing for thousands of atoms to
be simulated using the same computational resources as that for hundreds of DFT
atoms. Furthermore, there is an ease of interpretation compared to DFT, due to the
partitioning of the total energy into di�erent energy contributions, as discussed in
section 2.4.

In the literature, there have been many previous tight-binding titanium mod-
els. Legrand pioneered titanium defect calculations using tight-binding in the 1980’s
[119, 120], with a simple d-band model parameterised on the LMTO-DFT results of
Jepsen [121]. This model used the Gaussian density of states approach with the re-
cursion method to approximately diagonalise the tight-binding Hamiltonian [122–124].
This predicted a prismatically dissociated core structure for the ÈaÍ © 1/3È112̄0Í screw
dislocation in titanium, which agrees with the prevalence of prismatic glide in tita-
nium [12, 15, 24]. Girshick et al. [125, 126] similarly parameterised a d-only bond
order potential—another recursion method scheme—by fitting the d-band width to
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calculations of Harrison [84], and the pair potential to the empirical elastic constants
by splines—however this resulted in a model which did not generalise well enough
to dislocations, predicting a basal dissociation for the ground-state ÈaÍ screw core
structure, due to the opposite energetic ordering of prismatic and basal stacking fault
energies. The modified tight-binding scheme of Trinkle et al. [118] parameterised a
non-orthogonal s, p, d-valence tight-binding model by fitting to density functional the-
ory data, using splines to curtail the bond integrals at short range to circumvent the
need for short-range Coulomb interactions. This model was able to describe hcp and
omega phases, but ultimately fell foul of instability issues [127]. Urban et al. also pa-
rameterised an s, p, d-electron non-orthogonal tight-binding model on DFT data [128],
from which a d-only model was determined by Löwdin orthogonalisation [129]. Neither
of these models were used in applications outside of the paper in which they were pre-
sented, with the group moving on to perform a new parameterisation by Ferrari et al.
[130], implying that the models did not generalise well to defect modelling. The bond
order potential of Ferrari et al. is based on a non-orthogonal tight-binding parameter-
isation fit to DFT data, which has been orthogonalised and optimised, similar to the
Urban model, but with the inclusion of an EAM-like embedding potential to model
s-electrons [130]. This model could describe transformation path energies between the
bcc ¡ hcp and bcc ¡ omega phases, but stacking fault energies on the prismatic
plane did not allow for realistic dislocation simulations, obtaining a prismatic fault
energy ≥ 5 times less than the DFT prediction [19].

Interestingly, the only models which have explicitly simulated dislocations in the
literature are the simplest: the bond-order potential of Girshick et al., which pre-
dicted an erroneous basal spreading [131], and the Legrand model, which produced
a prismatically spread core structure, in-keeping with current theory, but with use
of a sizeable approximation, that of a Gaussian local density of states. More com-
plex models have not simulated dislocations, perhaps partly due to the expense of
non-orthogonal/direct-diagonalisation tight-binding, but more likely, dissuasion arises
from poor preliminary results of defect energies, such as stacking faults, from the
models themselves, given that more computationally-taxing DFT methods have been
able to perform dislocation relaxations [19, 132, 133]. This agrees with the deviation
of validation tests from literature data in derived models, such as that of Ferrari et
al. [130], suggesting that these models are overfit to the data they were supplied with
during fitting. The chance of overfitting increases with model complexity: the number
of parameters to fit [134, 135]. Hence, it would be of use to create a new titanium
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tight-binding model which contains enough physics/parameters to agree with the ex-
perimental and ab-initio results—elastic constants, cohesive energies, stacking fault
energies, dislocation core structures etc—while being simple enough to mitigate the
problem of overfitting, allowing for a transferable tight-binding model, which addi-
tionally welcomes the benefit of scalability to large numbers of atoms.

There are many-fold benefits to increased scalability. In explicit dislocation sim-
ulations, there is a reduction of the influence of boundary conditions on dislocation
relaxation, allowing for accurate core structure resolution. There is also an enhanced
scope of simulations available, which would be prohibitively expensive in DFT, such
as explicit calculations of the Peierls stress of dislocations on di�erent glide planes,
NEB calculations for kink-pair formation energies of dislocations and solute migration
in the vicinity of dislocations, and so on.

In this work, two separate titanium tight-binding models were fitted: one with only
d valence electrons, and another with s and d valence, hereon referred to as the d and
sd models respectively. Both models were parameterised with the aim of modelling
defects, in particular modelling of dislocations and their solute interactions in titanium
alloys, to improve upon the aforementioned tight-binding models, and to shed light on
the dramatic solute-hardening e�ect of oxygen in titanium with oxygen content. The
sd tight-binding model was also fitted for integration with the polarisable-ion tight-
binding model of TiO2/H2O, originally developed by Lozovoi and Paxton et al., in
which the Ti-Ti parameters give unsatisfactory results for bulk Ti properties [136]. Ti-
H parameters were fitted to properties of TiH2. Integration of the sd titanium model
with the TiO2/TiH2/H2O model would result in a tight-binding model with many
applications, allowing for simulations of water on a titanium surface, electrochemistry
simulations and the modelling of stress-corrosion cracking.

3.2 Methods

3.2.1 Ti-Ti parameters

The bond integrals for both the d and sd-models were chosen to have a simple expo-
nential distance dependence.

V¸¸Õm(r) = V 0
¸¸Õm exp{≠p¸¸Õmr}, (3.1)
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where V¸¸Õm is the bond integral between orbitals ¸ and ¸Õ, with bonding orbital m,
p¸¸Õm is the exponent and r is the distance between the atoms of interest. The bond
integrals V¸¸Õm, will be denoted as ¸¸Õm for convenience. For the d model, only dd‡,
ddfi and dd” bond integrals were used. Additional ss‡ and sd‡ bond integrals were
used in the sd-model.

Analysis of the hybridisation of d states with nearly-free electron states in transition
metals gives rise to d-band resonances, which suggest a fifth-degree power law distance
dependence of d-orbitals for the matrix elements [84, 104, 137–139]. However, it has
not been shown that a power-law dependence exhibits better transferability over a
simple exponential dependence [140, 141]. Many power-law models have not fared
well in predicting data outside of their fitting range [118, 125, 142–144]. Furthermore,
power laws have large first or second derivatives compared to exponentials, when
modified by a cuto� function. The large derivatives of power laws can complicate
fitting for elastic properties, and would provide noisy forces [145].

Canonical band theory [89, 139] suggests that the bond integrals are in the ratio

dd‡ : ddfi : dd” = ≠6 : 4 : ≠1. (3.2)

It has been shown in an sd non-orthogonal model of titanium, which has subsequently
been orthogonalised to a d-band only model, that bond integral ratios can deviate
from canonical band theory; in the case of Urban et al. [128], the ratio turned out
to be dd‡ : ddfi : dd” = ≠4.3 : 3.6 : ≠1. This orthogonalisation procedure results in
bond integrals which approximately account for environmental dependence by bond
screening [79, 128, 146]. This provided an estimate for how much one could allow the
canonical band ratios to vary during fitting. For the purpose of fitting these models,
the canonical band ratios were allowed to deviate from the ideal ratio by 25%.

In tight-binding, each orbital has a finite extent. To achieve this, the bond integrals
and pair potential are modified by a cuto� function, which forces these functions to
decay to zero from a given radius r1 to the extent rc. A fifth-order multiplicative
polynomial was used in these models as the cuto� function, with r1 chosen to be
between first and second neighbours in the hcp structure, and rc between second and
third-neighbours. This gave the value of the function of interest in the tail, ftail, when
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between r1 and rc, as

ftail(r) = (R)≠5(f(r)R2 + (r ≠ r1)((R
df(r)

dr
≠ 3f(r))R

+ (r ≠ r1)(
1
2

d2f(r)
dr

R ≠ 3df(r)
dr

)R + 6f(r)))(r ≠ rc)3, (3.3)

where R = r1 ≠ rc and f(r) is the function which is being cut o� (the bond integrals
or the pair potential). It was verified that the cuto�s were not close to neighbour
shells found in titanium polymorphs, such that in future simulations, there would be
no large and sudden forces arising from the inclusion of extra neighbours, as would be
the case in molecular dynamics or defect simulations. A multiplicative cuto� type was
preferred over augmentative as it has been shown to mitigate the e�ect of large second-
derivatives, which can cause di�culty in replicating experimental elastic constants and
phonon dispersion [145].

In fitting, it was found that having only first-neighbour interactions, for our par-
ticular paradigm of functional forms for bond integrals and the pair potential, did
not give desirable properties for the hcp phase: elastic constants generated for the
hcp phase resulted in negative Cauchy pressures and a poor description of the energy
di�erence between titanium polymorphs. Increasing the range of the interactions to
second-neighbours produced more favourable results.

The form of the pair potential was chosen to be a simple sum of two exponentials,
with a rapidly decaying power law term included only in the d-model.

Vpair(r) = A1 exp {≠p1r} ≠ A2 exp {≠p2r} + A3r
≠b3 , (3.4)

where r is the distance between two species, and Ai, pi and bi are parameters. Of these
terms, the exponentials, which have one large positive term, and a smaller negative
term, contribute the most over the range of interaction, with the power law chosen
to only increase the repulsion at smaller distances. The addition of this power law
was to give “-surface energies reminiscent of DFT due to the close proximity of atoms
at particular stacking faults. This will be discussed in section 3.2.2.3. The resultant
pair potential was highly repulsive at short distances, yet became slightly attractive at
larger distances. This allowed for one to approximately account for the attractive e�ect
of sd hybridisation in this simple d-orbital only model, as done in previous, exclusively
d-orbital, tight-binding models for titanium [125]. Even though hybridisation is not
pairwise in character, we did not deem it necessary to add in extra parameters or
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e�ects to complicate, or risk overfitting, the model. The results of parameter fitting
and a summation of the functional forms used will be found later in section 3.3.1.

The data used to fit to was a mix of DFT and empirical data. Great importance was
given to the hcp lattice parameter, and the structural energy di�erences between the
titanium polymorphs, all of which were compared to GGA-LMTO calculations using
the questaal suite [147]. Bandwidths at the high symmetry points of the hcp bands
were used as targets, and calculated from DFT by ascertaining bands of dominant
d character and taking the di�erence between the highest and lowest eigenvalues. d

character was determined by decomposition of the eigenvector norm by summation
over corresponding orbital subsets, similar to a Mulliken analysis.

To fit the parameters, an objective function was defined as

E(x) =
ÿ

i

wi(fi(x) ≠ f̂i)2 + (–||x||2 + (1 ≠ –)||x||1) , (3.5)

where x is a vector of input parameters, fi(x) are quantities calculated from the input
parameters and f̂i are the respective target quantities from DFT or empirical data.
wi are the weights for each quantity, which act as feature scalers. The L2 norm is
||x||2 =

Òq
j x2

j
and the L1 norm is ||x||1 = q

j abs(xj), where xj are the components
of the input vector.

The absolute error Errabs.(xi) was used for the initial calculation of these weights
w̃i = 1/Errabs.(xi)2, wi = w̃i/

q
k w̃k. The absolute error for each quantity was cho-

sen by hand. Quantities which were only given a small absolute error were of high
importance, such as lattice and elastic constants, as such, the optimiser would have
a preference to minimise these quantities. Barzdajn et al. [148] have proposed other
objective functions which have resulted in a transferable tight-binding model for Fe,
but this metric was deemed to be su�cient for our purposes.

To mitigate the overfitting of parameters, an Elastic Net regularisation term was
added to the objective function, the final term in equation (3.5), which consists of
the L1 and L2 norms of the input parameter vector x, which was scaled prior to
calculation of the regularisation term. The addition of these L1 and L2 penalties forced
the parameters obtained after optimisation to be more similar, reducing the variance,
and therefore the dependence on the user-chosen data in the training dataset. The L1
norm has the added benefit of allowing sparsity of the parameters during optimisation:
it allows redundant parameters, say in the pair potential—the final term—to go to
zero [134, 135]. One can think of this penalty as an incentive for the optimiser to
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“distribute” the magnitude of the parameters more optimally, so that quantities which
explain most of the behaviour will be of greater importance, and hence will be allowed
a large value if necessary, and vice versa for parameters of little importance.

To hasten the fitting of parameters, if a set of parameters produced a quantity
which was out of an acceptable range, the evaluation of the objective function would
immediately cease and submit a large value to the optimiser, dissuading the optimi-
sation algorithm from searching close to that area in parameter space.

The objective function was minimised within predefined constraints by use of the
CMA-ES (Covariance Matrix Adaptation-Evolution Strategy) algorithm, using the
python implementation by Hansen [149]. Parameters put into the CMA-ES algorithm
were first transformed to have similar sensitivities with respect to the bounds in which
they are sought. We achieved this by the transformations detailed by Hansen [150].
This allows for the initial assumption of the CMA-ES algorithm, that the covariance
matrix is unity, to be more readily satisfied, resulting in a better conditioned parameter
space for the CMA-ES to search [151, 152]. This mitigates premature convergence.
Parameters were transformed back when passed into the objective function, allowing
for evaluation. This objective function value was then fed into the CMA-ES optimiser.

The fitting of both the sd-model and d-model was achieved in the same fashion,
with the modification that in the sd-model the on-site energy splitting was determined
prior to full parameter fitting. Initially the levels were simply hand-tuned to reproduce
the energy di�erence between the GGA-LMTO s and d bands. However, with the
incorporation of the sd-model into the titania model, the band gaps for the anatase
and rutile phases became non-existent, which was not apparent for the d-model. This
was due to the bulk titanium s-states being lower in energy than the d-states, which
are both found in the valence bands of anatase and rutile band structures. The
addition of the s states therefore reduced/removed the band gap. To rectify this,
without introducing s and d overlap integrals—which would reduce the scalability of
the model due to the S matrix not being unity—the Ti–s on-site energy was allowed
to be increased with respect to the d states, which as a consequence, increased the
amount of hybridisation between the s and d bands. The choice of the s–d splitting
was achieved by a rough fitting of Ti-Ti bond integrals, with additional checks that
the band gaps in TiO2 phases were preserved. The best s–d energy splitting value was
chosen from the best parameter set of 10 CMA-ES optimisation runs. Then it was
fixed during the last, finer stage of parameter fitting, where all parameters but the
splitting were allowed to vary.
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All calculations for each of the phases, bar the 4h and 6h phases, were done with
a k-point mesh of 30 ◊ 30 ◊ 30. The 4h and 6h phases had their k-points along the
c-axis reduced by 2 and 4 times respectively due to the length of their cells, to keep a
similar k-point density. Optimal lattice parameters were found by minimisation of the
cohesive energy with respect to the given lattice constant(s) using the Nelder-Mead
algorithm. Elastic constants were determined by the dependence of the energy with
respect to particular strains of the structure, about the optimal lattice parameters
[153, 154]. A fifth-order polynomial was fitted, to each of these dependencies, and
the curvature extracted from the minimum, from which the elastic constants and bulk
modulus could be calculated.

When evaluating the C11, C12 and C66 elastic constants, it was necessary to fully
relax the structure, to find the minimum energy at each strain, prior to the polynomial
fitting. Application of certain homogeneous strains to a hcp lattice may reveal internal
degrees of freedom which are not able to relax [155]. One can determine the change
to these three constants by calculating internal elastic constants, as in the paper by
Cousins [156]. Two of these internal elastic constants are related to phonon frequencies
of the optical branches at the � -point. Therefore to improve agreement with phonon
data, relaxation prior to elastic constant evaluation was performed when fitting the
models.

Results from the first rounds of fitting found that soft modes (imaginary frequen-
cies) would appear in the phonon spectra for omega and hcp phases, despite structural
stability indicated by their elastic constants [157, 158]. This has been observed in other
tight-binding models during fitting [146]. As such, it was necessary to calculate the
phonon density of states during objective function evaluation, to verify there were no
negative densities resulting from these imaginary frequencies. These calculations were
achieved with the phonopy code [159].

3.2.2 Ti-Ti Validation

For a model to provide any predictive capability, it must first pass tests in which it
can adequately replicate phenomena/data which it was not supplied with during the
fitting phase. If a model can do so, then it gives an indication whether it generalises
well to situations outside of which it was shown. If it cannot, then it is either too
biased—the model is too simple—or it is overfit to the data it was trained on.

To validate the fitting of the tight-binding models, one can compare calculated
quantities to empirical/density functional theory data. Vacancy formation energies
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provide a measure of the bond strength between atomic species; phonon spectra show
the dispersion relation of the simulated lattice under small deformations and “-surfaces
show the energies associated with the shearing of the lattice on a particular glide plane,
from which one can predict dislocation dissociation distances. Further validation of
the model, by calculation of solution energies, is described in section 4, due to their
pertinence in dislocation modelling.

3.2.2.1 Vacancy formation energies

The vacancy formation energies were calculated using a 5 ◊ 5 ◊ 4 titanium cell, where
one titanium atom was removed, resulting in a cell of 199 atoms. The perfect cell and
cell with a vacancy underwent structural and volume relaxation until all forces were
below 1◊10≠5 Ry/bohr, where the k-point mesh was 6◊6◊8. The vacancy formation
energy was then calculated simply as [81]:

Evac. form = E(TiN≠1) ≠ N ≠ 1
N

E(TiN), (3.6)

where N = 200 is the number of atoms in the perfect lattice and E(TiN≠1) and E(TiN)
are the energies of relaxed cells with and without a vacancy respectively.

3.2.2.2 Phonons

Phonon spectra show the dispersion characteristics of lattice vibrations. From these
spectra, one can compare how well the simulated lattice performs under small de-
formations to DFT methods. From numerous phonon spectra calculations, one can
also predict the stability of the di�erent phases with temperature by calculation of
the Gibbs free energy. To do this one can use the quasi-harmonic approximation. By
calculating the Helmholtz free energy from the phonon density of states at di�erent
volumes and using the Legendre transform, we get the Gibbs free energy

G(T, p) = min
V

[Ecoh(V ) + F (T ; V ) + pV ], (3.7)

where, Ecoh(V ) is the energy of the cell at a given volume V , F is the Helmholtz free
energy from the phonon density of states, with T , p and V being the temperature,
pressure and volume respectively. This was achieved within the phonopy code [159].
2 ◊ 2 ◊ 2 cells were used in the phonon calculations for each of the –, — and Ê phases.
The k-point density was kept similar for all phases, with k-point meshes of 15◊15◊10,
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15 ◊ 15 ◊ 15 and 10 ◊ 10 ◊ 15 for the –, — and Ê phonon cells respectively.

3.2.2.3 Gamma surfaces

Fig. 3.1: Diagram showing sampling of “-surface energies by shearing of a block by a fault
vector · .

A crystal can be sheared along preferential planes. In doing so, a stacking fault is
created and the energy increases—assuming the crystal is stable upon the action of
the shear. The variation of the excess energy of a lattice, undergoing shear by a fault
vector · , on a particular plane “, is called a “-surface, as shown in figure 3.1. By
calculation of “-surfaces, one can determine where stable stacking faults are—local
minima on these surfaces—from which one can determine energetically favourable
splittings of full dislocations into partials, which are necessarily bordered by stable
stacking faults [160, 161]. These split configurations strongly influence the plasticity
of the material, and are of great importance in hcp and fcc metals [11].

Generally, a dislocation of Burgers vector b1 will dissociate into partials b2 and b3

if
Edisl.

b1 ≠
Ó
Edisl.

b2 + Edisl.
b3 + Edisl. int

b2,b3 + “ · A
Ô

> 0, (3.8)

where Eb1 is the energy of the perfect dislocation, Eb2 and Eb3 are the energies of the
partial dislocations, Edisl. int

b2,b3 is the interaction energy between the partials, “ is the
“-surface energy and A is the area of the produced stacking fault upon dissociation.

In a tight-binding model, it is crucial that we are able to obtain the correct ordering
of these stacking fault energies, such that we are more likely to obtain correct splitting
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of partial dislocations when performing dislocation relaxations, thereby allowing for
physical simulations. It has been shown that there is a great deal of di�culty in
reproducing stacking faults in hcp titanium using methods other than DFT [119, 162,
163]. There is particular issue in reproducing the stable stacking fault on the prismatic
plane, which has the associated dissociation

1
3È11̄20Í æ 1

6È11̄20Í + 1
6È11̄20Í. (3.9)

DFT calculations show there is a stable stacking fault along this direction, however in
all the titanium tight-binding models and empirical potentials which have calculated
this quantity, one does not find a minimum at the expected position. In fact, all of
the models, bar that of the recursion method results of Legrand, found the prismatic
fault energy was less than that of the basal fault [119, 120, 154, 164].

For the basal plane, one expects the dissociation

1
3È11̄20Í æ 1

3È11̄00Í + 1
3È01̄10Í. (3.10)

which is required by the symmetry of the hcp lattice, and corresponds to fcc stacking
[162].

To obtain “-surface energies, one followed a similar prescription to that of Yin et
al. [161]. A diagram can be found in figure 3.1. First, a perfect supercell with a
chosen number of planes was created, where the normal vector of the plane of interest
is oriented along the Z axis. The imposition of a faulted surface was achieved by
modifying the perfect lattice vector along this direction, pperfect

z
, by adding the fault

vector · , giving a new principal lattice vector pz = · + pperfect
z

. This introduced
faulted surfaces on the top and bottom of the supercell. These faulted supercells were
then allowed to relax only perpendicularly to the fault (along the Z axis only).

These calculations were done in tight binding with 15 layers for both basal and
prismatic “-surfaces. The k-point meshes for the convergence were 20 ◊ 30 ◊ 2, 30 ◊
20 ◊ 2 and 8 ◊ 30 ◊ 10 for the basal, prismatic and pyramidal “-surfaces respectively,
which all gave energies within ±0.1 mRy of a 40 ◊ 40 ◊ 10 mesh giving an error for
the gamma surface energies of ±3 mJm≠2. Relaxation was performed until all forces
were below 1 ◊ 10≠5 Ry/bohr.

Upon looking along the direction normal to the first-order pyramidal (fi1) plane in
hcp, one finds that there is no periodicity in the stacking of planes. One must therefore
use a cell which approximately has periodicity. A 32 atom cell was found to su�ce, as
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used by Ready et al. [165] in their reproduction of the full pyramidal gamma surface
on the wide plane in hcp Ti using pseudopotentials. There are both narrow and wide
fi1 planes. The narrow fi1 plane is relevant to ÈaÍ screw dislocation dissociation [166],
with dissociation occurring by the equation [160]

1
3È11̄20Í æ

A
1
6È11̄20Í + 4c2 ≠ 9a2

2(4c2 + 3a2)È11̄02Í
B

+
A

1
6È11̄20Í ≠ 4c2 ≠ 9a2

2(4c2 + 3a2)È11̄02Í
B

.

(3.11)
The fault vector for this dissociation corresponds to a two-layer disconnection of

the
Ó
1̄011

Ô
twinning system [167]. The wide fi1 plane, is relevant to the splitting of

Èc + aÍ dislocations, which split into three Burgers vectors [165].
For the basal and prismatic planes, relaxation perpendicular to the fault plane is

su�cient to obtain accurate “-surface energies. However, as Curtin and Kwasniak
detail [166, 168], to obtain realistic stable stacking fault energies for the first-order
pyramidal plane, one must allow for full, unconstrained relaxation in addition to op-
timisation of the pz lattice vector, or use the NEB method. This has been found to
be necessary to obtain the true stable stacking faults in the first-order pyramidal and
prism II planes, due to in-plane atomic shu�ing [166]. In these tight-binding calcu-
lations, full unconstrained relaxation with volume optimisation was only performed
for the narrow first-order pyramidal energies along the line equal to 1

6È112̄0Í, as the
minimum along this line is pertinent ÈaÍ screw dislocation dissociation, as found in
equation (3.11). The pz lattice vector component normal to the surface was opti-
mised using the Nelder-Mead algorithm. The k-point sampling and relaxation criteria
for each step was identical to the initial relaxation for the full first-order pyramidal
“-surface.

3.2.2.4 Dissociation Distances

We see from equation (3.8) that there is a balance of the energy when dislocations
dissociate into partials. The interaction of partials is repulsive, and goes as 1/r from
elasticity theory. Therefore, the partials would prefer to maximise their distance, cre-
ating a large stacking fault area. However, the energy penalty in creating a stacking
fault increases linearly with area, thus, there must be a compromise for the distance
between the partials: the dissociation distance. One can calculate the dissociation dis-
tances of dislocations in tight-binding and compare to other interatomic force methods
using the “-surface energies and dislocation energy coe�cient matrices found from each
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method. These results can give indications of dislocation behaviour prior to perform-
ing full relaxations.

Following Clouet [155], we can use the result of the self-energy of a dislocation
[7, 169] as in equation (2.96), to compute the dissociation distance of a dislocation in
particular planes. The energy variation caused by a dissociation of a dislocation of
length d is given by

�Ediss(d) = ≠b(1)
i

Kijb
(2)
j

ln
A

d

rc

B

+ “d, (3.12)

where b(k) are the Burgers vectors of the dissociated dislocations. “ is the corre-
sponding gamma surface energy, rc is the dislocation core radius and K is the energy-
coe�cient matrix. Minimising this expression, one can find the equilibrium dissocia-
tion distance as

deq
b =

b(1)
i

Kijb
(2)
j

“
, (3.13)

With the orientation of the simulation cell as, X = È101̄0Í, Y = È0001Í, Z =
È12̄10Í, one finds the components of the energy prefactor matrix as [155]:

Kscrew
11 = 1

2fi

1
C̄11 + C13

2
ı̂ııÙ

C44
1
C̄11 ≠ C13

2

C33
1
C̄11 + C13 + 2C44

2 (3.14)

Kscrew
22 =

Û
C33

C11
Kscrew

11 (3.15)

Kscrew
33 = 1

2fi

Û
1
2C44 (C11 ≠ C12) (3.16)

here, C̄11 =
Ô

C11C33.
For the basal plane one expects the dissociation as found in equation (3.10). This

gives the dissociation length of the ÈaÍ screw dislocation in the basal plane as

dscrew
b = (3Kscrew

33 ≠ Kscrew
11 )a2

12“b
, (3.17)

For the prism plane, the 1/3È12̄10Í dislocation can dissociate according to equation
(3.9). It has been found in EAM potentials, that the stacking fault minimum can be
displaced along the [0001] into resulting in two partials, 1/6[12̄10]±–(c/a)[0001], where
the parameter – controls the position along the [0001] direction. The dissociation
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length is therefore

dscrew
p = (Kscrew

33 a2 ≠ 4–2Kscrew
22 c2)

4“p

, (3.18)

For the basal {0001} ÈaÍ edge dislocation, one can use the expressions of Savin,
who corrected the initial work of Foreman [170, 171] to obtain the elements of the
energy prefactor matrix,

Kb. edge
11 = 1

2fi

1
⁄2C33 + C13

2 ı̂ıÙ C44 (⁄2C33 ≠ C13)
C11 (⁄2C33 + C13 + 2C44)

(3.19)

Kb. edge
22 = ⁄2Kb. edge

11 (3.20)

Kb. edge
33 = 1

2fi

Û
1
2C44 (C11 ≠ C12) (3.21)

where, ⁄ =
Ò

C11/C33. Savin [170] also gave an expression for prismatic {101̄0} edge
dislocation matrix element, where only the the K11 prefactor is necessary

Kp. edge
11 = C2

11 ≠ C2
13

2C11
. (3.22)

For the first-order pyramidal plane edge dislocation, {101̄1} ÈaÍ, the energy coe�-
cient matrix was evaluated numerically from the anisotropic elasticity solutions rotated
into the appropriate dislocation coordinate system, where the x3 axis was rotated by
◊ = arccos 2q/

Ô
3 + 4q2, where q is the c/a ratio, about x1, such that the dislocation

line was on the fi1 plane. It should be noted that the full anisotropic description, as
detailed in section 2.7, must be used. Simplified equations for the anisotropic solu-
tions, such as those found in Hirth and Lothe [7] may only describe systems which
have the x1≠x2 plane as a mirror plane, which is not the case with pyramidal stacking,
as there is no periodic stacking of planes along this direction [165].

From these energy coe�cients, one used equation (3.13) to evaluate the dissociation
distances numerically, using the partial Burgers vectors found in equations (3.17), (3.9)
and (3.11) for the basal, prismatic and first-order pyramidal dissociation distances
respectively.

3.2.3 Ti-O and Ti-H parameters

To obtain a model of both bulk titanium and titanium dioxide, one had to replace the
Ti-Ti parameters from the model of Lozovoi and Paxton [172], with the newly-fitted
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Ti-Ti model, and subsequently refit the Ti-O parameters. The original paper had a
Ti-Ti model which only had a description of d hopping integrals, with the addition of
a further two s-electrons included on each Ti, which had no hopping allowed between
them. These s-electrons are essential as they fill up the oxygen p-states in TiO2. To
describe both pure titanium and TiO2, the sd-model was chosen for integration with
the Lozovoi model, as it explicitly incorporated fitted Ti–s states.

Within the parameterisation of the aforementioned paper, there was no explicit
description of hydrogen interacting with titanium, despite the inclusion of O-H inter-
actions for the description of water. To complete the description of the physics when
water approaches a titanium/titanium-dioxide surface, Ti-H bond integrals were fitted
with ss‡ and sd‡ bond integrals. These were fit simply to the bands, optimised lat-
tice constant and bulk properties calculated from LMTO-GGA simulations of fluorite
TiH2.

To mesh the new Ti-Ti parameters with the TiO2 model, the Ti-O parameters
model had to be refitted to replicate the properties found in the Lozovoi and Pax-
ton paper: lattice parameters, structural energy di�erences, bulk moduli and band
gaps for the anatase and rutile TiO2 polymorphs. The data was obtained from DFT
and experiment. Additional data pertinent to electrochemical simulations was also
included, in particular, the energies associated with an oxygen/hydrogen approaching
and penetrating the bulk titanium (0001) surface on the hollow hcp and fcc sites. The
target data was generated by self-consistent LMTO-DFT calculations of an oxygen
approaching a 2 ◊ 2 titanium (0001) surface from a distance of 1.5c, where c is the
structurally optimised lattice parameter of the – titanium phase within the DFT. The
total energies obtained were subtracted from the reference distance of oxygen at 1.5c.
This data was fitted similarly to that of the Ti-Ti parameters, using the objective
function defined in equation (3.5), using the CMA-ES algorithm.

3.2.3.1 Water on titanium

To demonstrate the transferability and stability of the models created, the first ever
tight-binding simulations of water on titanium, known to the author, were performed.
This tested the Ti-Ti, Ti-O, Ti-H, H-O parameter sets. Molecular dynamics using an
NVT ensemble with a Nosé-Hoover thermostat was performed at 100K with a small
system size for testing: 2 ◊ 2 ◊ 3 slab of titanium atoms (24 atoms), with 16 water
molecules placed on either side of the slab. The cell used had a length of pz = 12chcpẑ,
where the titanium slab was placed in the centre. The configuration of water molecules
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was taken from a slice of an 128 water molecule cubic cell which had been equilibriated
over 100ps (using the same temperature and ensemble) to obtain the correct radial
distribution function of water. The timestep used in these simulations was 0.25fs.
Charge tolerance was 1 ◊ 10≠3. These simulations can be easily scaled to double or
triple the system size, and allow for calculations which are simply not possible in DFT
due to scaling issues, both with atom number and cell size: one can add vacuum at
no cost in tight-binding, whereas most DFT codes must have plane waves defined in
the vacuum.

3.3 Results

3.3.1 Ti-Ti parameters

Fig. 3.2: Bond integrals and pair potential of both d and sd titanium tight-binding models.

The parameters obtained from optimisation are shown in table 3.1, with the titanium
bond integrals being shown in figure 3.2.

One finds that the canonical band ratios for the titanium models are dd‡ : ddfi :
dd” = ≠6.0 : 3.0 : ≠1.2 and dd‡ : ddfi : dd” = ≠6.0 : 3.8 : ≠1.0 for the d-model
and sd-model respectively, which are in good agreement with canonical band theory,
equation (3.2), dd‡ : ddfi : dd” = ≠6 : 4 : ≠1. The canonical ratios for the d-model are
coincidentally similar to the d-orbital only model of Ferrari et al. in their bond-order
potential parameterisation [130]: dd‡ : ddfi : dd” = ≠6.0 : 3.0 : ≠0.9.
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Table 3.1: Parameters of the tight-binding models which describe titanium, titanium diox-
ide, titanium hydride, diatomic hydrogen and water. Notation for the functional
form of the scaling law for bond integrals and pair potential is clarified in Ta-
ble 3.2. All values are given in atomic Rydberg units.

On-site parameters
Ti O H

Ás –0.3764 Ás –2.1164 Ás –1
Ád –0.2282 Áp –1.1492
U 0.8287 U 1.0775 U 1
�ddd 8.0 �spp –0.9430
�ddg 28.0 �ppd 0

Bond integrals, V¸¸Õm, and scaling
Ti–Ti sd Ti–Ti d Ti–O Ti–H O–H O–O H–H

Function EXP Function GSP Function EXP Function EXP Function GSP Function EPL
V 0

ss‡
–0.150 V 0

ss‡
–0.037 V 0

ss‡
–0.26 V 0

ss‡
–0.5018 V 0

ss‡
–0.015 V 0

ss‡
–0.88

V 0
sd‡

–1.110 V 0
sp‡

0.062 V 0
sd‡

–0.16 V 0
sp‡

0.002
V 0

dd‡
–1.410 –1.175 V 0

ds‡
–0.147 V 0

ps‡
–0.4362 V 0

ps‡
–0.002

V 0
ddfi

0.899 0.597 V 0
dp‡

–0.144 V 0
pp‡

0.050
V 0

dd”
–0.229 –0.241 V 0

dpfi
0.084 V 0

ppfi
–0.020

pss‡ 0.370 nss‡ 3 qss‡ 0.54 nss‡ 2.0963 nss‡ 2 nss‡ 1.5
psd‡ 1.000 nsp‡ 3 qsd‡ 0.28 nsp‡ 2
pdd‡ 0.610 0.559 nds‡ 4 nps‡ 1.5019 nps‡ 2
pddfi 0.600 0.569 ndp‡ 2.1 npp‡ 3
pdd” 0.751 0.774 ndpfi 3.356 nppfi 3

nc 8 nc 4.0561 nc 6
r0 3.685 r0 1.8094 r0 5.6
rc 7.37 rc 3.7985 rc 9.0

Pair potentials, „, and scaling
Ti–Ti sd Ti–Ti d Ti–O Ti–H O–H O–O H–H

Function EPL Function EPL Function EPL Function GSP Function EPL Function EPL
„0

1 75.73 59.09 „0
1 30687 „0

1 194.15 „0 0.73669 „0
1 4.0306◊10≠3 „0

1 1.631
m1 0 0 m1 12 m1 –1.3 n 3.3502 m1 10 m1 –2.38
p1 1.198 1.219 p1 0 p1 1.857 nc 6.3096 p1 0 p1 0
„0

2 –3.78 –3.22 „0
2 238.8 rc 3.3550 „0

2 –2.0265◊10≠3 „0
2 0.1

m2 0 0 m2 1 m2 6 m2 –12
p2 0.650 0.686 p2 1.5609 p2 0 p2 0
„0

3 0 593519.11
m3 0 –11.5
p3 0 0
r0 1.0 1.0 r0 1.8094 r0 5.6

Cut-o� distances [r(1)
cut; r(2)

cut]
Ti–Ti Ti–O Ti–H O–H O–O H–H

r(1)
cut 6.5 r(1)

cut 4 r(1)
cut 4.34 r(1)

cut 2.1 r(1)
cut 8 r(1)

cut 4
r(2)

cut 10.5 r(2)
cut 8 r(2)

cut 10.85 r(2)
cut 5.5 r(2)

cut 11 r(2)
cut 5.8

Table 3.2: Explicit form of the scaling laws referred to in Table 3.1. Prefactor A denotes
V

0
¸¸Õm in case of bond integrals and „

0 in case of pair potentials.

Notation Function Explicit form

GSP Goodwin–Skinner–Pettifor[173] f(r) = A (r0/r)n exp {n [≠ (r/rc)nc + (r0/rc)nc ]}
EPL Exponential ◊ power law f(r) = q

i

Ai (r0/r)mi exp [≠pi(r ≠ r0)]
EXP Exponential f(r) = q

i

Ai exp [≠pir]
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The results of the fitting to the training data set are shown in table 3.3.
Both the d and sd-model fit the target data well, with the d-model obtaining

better agreement with lattice and elastic constants compared to the sd model. The
cohesive energies of the – phase for the models agree well with experiment E– Exp.

coh.
=

≠4.85 eV/Atom [176], but this cohesive energy per atom is less negative than what is
found in DFT, E– LMTO-GGA

coh.
= ≠6.64 eV/Atom (this work), E– vasp

coh.
= ≠6.68 eV/Atom

[130]. Despite the di�erence in the absolute cohesive energy from DFT, the small
structural energy di�erences between titanium polymorphs are well produced by tight-
binding, especially for the sd-model.

It was thought that with the addition of s-electrons, the sd-model would be able
to reproduce the DFT result of Ê phase being marginally lower in energy than the
hcp phase—due to the increased cohesion of titanium by the inclusion of s-electrons
in conjunction with the compactness of the Ê phase compared to –, as seen in pair
correlation functions of each optimised phase in DFT. In pure d-orbital bond-order
potential models, the e�ect of s-electrons is usually approximated by an “embedding”
potential, which is of Finnis-Sinclair/EAM form. This extra term was included in the
titanium bond-order potential model by Ferrari [130], which replicated the energetics
of Ê ¡ – and — ¡ – transitions from DFT. They attribute 60% of the cohesive energy
to their s-electron embedding term, which agrees well with the projection of cohesive
energy contributions from a previous non-orthogonal tight-binding parameterisation
[128]. Due to the strong hybridisation of the s-electrons with the d in the sd-model,
as will be shown in the tight-binding bands, figure 3.3, there is a smaller amount
of cohesive strength from s-electrons. In the sd-model, the s-states are pushed up
relative to the expected splitting from DFT or s, p, d tight-binding [128]. Therefore
the centre-of-gravity of the s-electron contribution to the density of states is higher in
energy relative to the contribution from d-states, and with hybridisation, there is more
s-electron density of states above the Fermi level, causing a reduction in the cohesive
contribution of s-states. As such, this particular feature could not be replicated, but,
as the focus of the model is for the simulation of pure titanium, it is not expected to
hinder predictions or insights obtained from the model.
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hcp | –
Lattice Parameters Elastic Constants (GPa)

d-TB sd-TB Reference d-TB sd-TB Reference
a (bohr) 5.585 5.674 5.574a C11 171.6 167.3 176.1b

c/a 1.584 1.586 1.587a C33 198.9 205.2 190.5b

C44 47.4 46.6 50.8b

C12 94.7 96.7 86.9b

C13 61.2 60.9 68.3b

Other Hexagonal Phases
Omega | Ê

d-TB sd-TB Reference
a (bohr) 8.935 9.039 8.733c

c (bohr) 5.387 5.486 5.323c

4h 6h
d-TB sd-TB Reference d-TB sd-TB Reference

a (bohr) 5.576 5.681 5.563c a (bohr) 5.574 5.676 5.546c

c (bohr) 18.098 18.328 17.759c c (bohr) 27.184 27.579 26.771c

Cubic Phases
bcc | — fcc | “

d-TB sd-TB Reference d-TB sd-TB Reference
a (bohr) 6.201 6.201 6.179 c a (bohr) 7.873 8.013 7.887 c

Cohesive Energy [eV/Atom] / Energy di�erences [mRy/Atom]
d-TB sd-TB Reference

E(–) cohesive –4.413 –5.086 –6.646c

E(Ê) ≠ E(–) 0.588 0.357 –0.633c

E(4h) ≠ E(–) 1.580 1.663 3.172c

E(6h) ≠ E(–) 2.483 2.400 3.720c

E(bcc) ≠ E(–) 5.351 7.958 7.635c

E(fcc) ≠ E(–) 3.780 3.825 4.519c

a Expt. Ref [174]
b Expt. Ref [175]
c LMTO-GGA DFT (this work)

Table 3.3: Table of the titanium objective function values compared to experimental and
DFT target data. The hcp lattice parameter, and the structural energy di�er-
ences between titanium polymorphs were given large weights in the objective
function.
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3.3.1.1 Bands

Fig. 3.3: Band structure for the titanium a) d and b) sd tight-binding models compared to
c) LMTO-GGA DFT. The d-orbital character of the GGA bands is shown in red
for clarity.

A comparison of the d and sd bands compared to LMTO-GGA can be found in figure
3.3. We find that the shape of the tight-binding bands match well with those found in
DFT, but the d-band width is a little smaller than found in DFT. This is consistent
with other parameterisations, notably that of Urban et al. where the orthogonal d-only
model, which was derived from a full s, p, d non-orthogonal model, had a reduced d

bandwidth [128]. The sd model exhibits s-bands which are well hybridised, which
have a smaller deviation from the centre of gravity of the d bands compared to GGA
from the aforementioned raising of the Ti-s on-site energy, such that the TiO2 anatase
and rutile bands have a su�cient band gap.

3.3.2 Ti-Ti Validation

Quantity d-model sd-model BOP [130] BOP [125] NOTB [118] DFT [177] Experiment [178]
EVac.Form. 2.64 3.27 2.80 2.30 1.80 1.97 1.27

Table 3.4: Vacancy formation energies of the titanium tight-binding models compared DFT
and experiment. Energies are in eV.

The first validation test of the titanium tight-binding models was to measure the
vacancy formation energy, as found in table 3.4. The vacancy formation energies are
significantly higher than those found in DFT and experiment. This implies that the
energy to break bonds in a simulated hcp lattice, with the d and sd tight-binding
models is larger than what is found in DFT or experiment. This large di�erence is
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likely due to the inclusion of charge transfer in these tight-binding models, where
charge transfer is exaggerated compared to BOP and DFT.

The deviation from BOP can be explained by the fact that it is based on the concept
of local charge neutrality, where atoms are taken to be charge neutral. Framing this in
a self-consistent charge transfer tight-binding model, a subset of the PITB used in the
d-model and sd-model, the Hubbard U parameter, the penalty for charge transfer due
to Coulomb repulsion, may be taken to be infinity. This simulates a perfectly screened
metal where no e�ective charge transfer exists as the penalty is too great [81]. In the
d and sd models, the Hubbard U is fit to reproduce properties if TiO2. It is finite,
allowing charge transfer. These deviations of charge increase the electrostatic energy
of the defected lattice, increasing the vacancy formation energy.

These di�erences in the vacancy formation energy may result in larger surface
energies compared to DFT, with a further possibility of large dislocation excess en-
ergies, especially for simulated edge dislocations, and “-surface energies, however for
these cases, it depends on the amount of charge transfer found upon reaching self-
consistency.

3.3.2.1 Phonons

The d and sd tight-binding models give reasonable results for phonon dispersion, as
seen in figure 3.4. Deviations in the – and Ê phase phonons were found at A, with some
larger deviation in some optical branches in the latter at K and M. The — phonons
agree well with DFT. They exhibit imaginary frequencies (seen as negative in the
figure), as the bcc phase is not stable at 0K. It was found for all tight-binding models
that the bandwidths were a little larger than those found in DFT.
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Fig. 3.4: Phonons for pure titanium for the –, —, and Ê phases compared to LMTO-GGA.

The di�erence of the Gibbs free energy, with respect to the hcp phase is shown in
figure 3.5.

Fig. 3.5: The Gibbs free energy of the –, — and Ê phases, relative to the hcp phase of
titanium. The lowest di�erence corresponds to the most stable phase. Thermal
expansion of – is compared to experiment where the units are in 10≠6K≠1 [179].

We see that neither of the tight-binding models can reproduce the stability of the
omega phase, as found in DFT, as mentioned previously in the comparison of the
bare cohesive energies. In both DFT and tight-binding, the free energy of the bcc
phase diverges in an unphysical manner. This is because the bcc phase in titanium is
dynamically stabilised, and it has been shown previously that quasi-harmonic models
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are not able to capture dynamic stabilisation of these phases due to the omission of
entropic contributions [2]. This stabilisation can be achieved with the self-consistent
lattice-dynamical method [180] as was achieved by Kadkhodaei et al. in bcc Ti [181].

The thermal expansion of the hcp phases simulated from the d-model and sd-model
are larger than that of DFT. All atomistic methods used show a thermal expansion
much larger than the experimental value. This is likely due to the omission of entropic
e�ects as mentioned above. In the simulations with this model, it is not expected that
thermal expansion will hinder the predictive power of the results obtained in this
thesis. However, it could play a role in the high temperature molecular dynamics
simulations performed with the model.

3.3.2.2 Gamma surfaces

Fig. 3.6: Basal gamma surface in hcp compared to DFT (bottom) [160].

The basal and prismatic gamma surfaces can be found in figures 3.6 and 3.7. There is
very good agreement in the morphology of d and sd tight-binding models with DFT.
The intrinsic stacking fault on the basal surface, I2, associated with fcc stacking, is
found at 1/6[12̄10] + 1/6[101̄0], with energies of “d-TB

b = 215.0 mJm≠2 and “sd-TB
p =
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128.5 mJm≠2 for the d and sd models respectively. These are ≥ 50 to 150 mJm≠2

lower compared to DFT values, which range from 260 to 300 mJm≠2 [162, 166].
The “-surface for the prismatic plane is shown in figure 3.7. The expected dissoci-

ation of the ÈaÍ dislocation on the prismatic plane, is reproduced successfully in both
tight-binding models. Both have a minimum, albeit slight, at 1/6[12̄10], with ener-
gies of “d-TB

p = 128.5 mJm≠2 and “sd-TB
p = 155.5 mJm≠2. These are lower than those

found by DFT by around 100 mJm≠2 [162, 166], similar to the basal faults as detailed
above, but close to the experimental value calculated by Akhtar and Teghtsoonian of
145 mJm≠2 [21]. As such, it is expected that the expected dissociation distance of the
partials is larger than would be found in DFT. These dissociation distances can be
found in table 3.5.

Fig. 3.7: Prismatic gamma surface in hcp compared to DFT (bottom) [160].

The results for the wide plane pyramidal plane, and the narrow pyramidal plane
in figures 3.8 and 3.9 respectively. Both “-surfaces reflect their DFT counterparts in
terms of morphology and position of stable stacking faults, although the maximum
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“-surface energies are larger than DFT by around 200 mJm≠2.

Fig. 3.8: First-order pyramidal gamma surface on the wide plane compared to DFT [165].

The fi1 wide gamma surface, figure 3.8, matches very well with DFT calculations
of Ready [165]. One expects a similar splitting of the Èc + aÍ screw dislocation, into
three segments.

1
3[21̄1̄3] æ 4

18[11̄02]

+
31

6[112̄0] + 1
18[11̄02]

4

+ 4
18[11̄02],

where each line corresponds to a separate Burgers vector.
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Fig. 3.9: First-order pyramidal narrow gamma surface, with relaxation constrained. Com-
parison to DFT from reference [160].

For the pyramidal gamma surface on the narrow plane, figure 3.9, one finds the
expected splitting of the ÈaÍ dislocation, equation (3.11). Upon further volume and
structural relaxation, one finds the stable stacking fault energies, of which the d-model,
with a value of “d-TB

fi1 = 187.5 mJm≠2 agrees well with the value of Curtin et al.
“DFT

fi1 = 200 mJm≠2. The volume relaxed stable gamma surface energies can be found
in table 3.5.

3.3.2.3 Dissociation distances

Comparing our tight-binding model to the literature, one finds that both the d-model
and sd-model fare well to the other titanium tight-binding models, with dissociation
distances of screw dislocations are in good agreement with DFT, as seen in table 3.5. In
both models, the dissociation of the ÈaÍ dislocation on the prismatic plane is expected
to be exaggerated, due to the energy of the prismatic fault being underestimated
by ≥ 80 to 100 mJm≠2. Note that the model of Girshick [125] which predicts a
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—DFT—

Method dscrew
pris dscrew

basal dedge
pris dedge

basal dedge
pyr “p “b “fi1 a c/a C11 C12 C13 C33 C44

Curtin vasp [161] 6.631 1.252 10.431 4.382 4.919 214.0 306.0 200.0 2.924 1.582 177.0 90.0 84.0 189.0 40.0
Trinkle vasp [182] 7.083 1.391 10.459 4.680 1.516 220.0 292.0 689.0 2.950 1.586 172.0 82.0 75.0 190.0 45.0
Clouet vasp [19] 5.628 0.898 8.738 3.971 - 220.0 292.0 - 2.920 1.581 169.0 97.0 84.0 189.0 37.0
Clouet pwscf [19] 5.491 1.049 8.181 4.170 - 256.0 297.0 - 2.936 1.583 169.0 89.0 77.0 192.0 42.0
Tarrat siesta [162] 7.014 1.358 10.313 5.999 - 250.0 259.1 - 2.996 1.588 183.4 84.6 63.8 204.9 48.8

—Tight-Binding—

Method dscrew
pris dscrew

basal dedge
pris dedge

basal dedge
pyr “p “b “fi1 a c/a C11 C12 C13 C33 C44

Girshick BOP [163] 6.782 5.484 9.656 13.262 - 260.0 110.0 - 2.950 1.587 176.1 74.0 83.3 190.5 50.8
Matous BOP [144] 20.233 2.334 35.760 9.668 - 55.0 160.0 - 2.922 1.604 170.0 96.0 86.0 144.0 29.0
d-model (this work) 11.461 0.824 16.138 6.334 5.165 128.5 215.0 187.5 2.955 1.584 171.6 94.7 61.2 198.9 47.4
sd-model (this work) 9.992 0.839 12.850 9.879 1.065 155.5 128.5 887.5 3.003 1.586 167.3 96.7 60.9 205.2 46.6

—Empirical Potential—

Method dscrew
pris dscrew

basal dedge
pris dedge

basal dedge
pyr “p “b “fi1 a c/a C11 C12 C13 C33 C44

Hennig MEAM [118] 5.509 2.139 7.028 9.003 2.076 297.0 172.0 443.0 2.931 1.596 174.0 95.0 72.0 188.0 58.0

Table 3.5: Table of 1/3È11̄20Í dislocation dissociation distances on the prismatic, pyramidal
and basal planes. All distances, di, a, are in angstrom. Elastic constants Cij

are in GPa and stacking fault energies “i are in mJm≠2.

dissociation distance in-keeping with DFT, gives an erroneous ordering of stacking
fault energies, which results in a spurious spreading on the basal plane, as exhibited in
their dislocation calculations [154]. DFT has shown basal plane spreading to be highly
unstable due to the high energy of the cores [131]. The 12.85Å dissociation distance
of the sd-model prismatic edge dislocation which agrees remarkably well with that
of the experimentally measured value of de Crecy et al. of 12Å [183]. de Crecy
et al. also estimated the stacking fault energy (using isotropic elasticity theory) as
“p = 155 mJm≠2, which agrees almost exactly with the sd-model value.

One can make a connection with the Peierls-Nabarro model of a dislocation to in-
terpret dislocation dissociation distances in terms of dislocation mobility. The Peierls-
Nabarro stress, the critical stress on a glide plane necessary to initiate dislocation
glide, is given by

‡PN = 2µ

1 ≠ ‹
exp

I

≠4fi’

b

J

, (3.23)

where ‹ ¥ 0.31 for Ti is Poisson’s ratio, µ is the shear modulus, dplanar is the distance
between the glide planes and 2’ is the dislocation core width. In the original formu-
lation 2’edge = dplanar/(1 ≠ ‹) for edge dislocations, and 2’screw = dplanar for screws.
As the width of dislocations of edge character are generally larger than that of screws
(by 1/(1 ≠ ‹) ¥ 1.45 times) the Peierls-Nabarro stress, and therefore the mobility
of edge dislocations, is higher, due to the exponentially decaying dependence of the
stress on dislocation core width. To link to our dissociation distances, we can first
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imagine projecting the Burgers vector distribution of our dissociated dislocation fully
onto the dislocation glide plane. We can consider the half-width ’, which is defined to
be the value in the Peierls-Nabarro model at which the displacement along the glide
plane of interest u(x = ±’) = u(±Œ)/2 = ±b/8, or equivalently, when the disregistry
D(x), which is the cumulative Burgers vector along the glide plane, is ±b/4 [7], or in
the convention of Clouet, when D(x) = b/4, 3b/4. If one assumes that the glide-plane
projected Burgers vector density of each partial is split evenly about each partial dis-
location centre, then one can intuitively take ’ ¥ ddiss/2, as between 0 < x < ddiss/2,
the total integrated Burgers vector, the disregistry, will be b/4.

Therefore taking ddiss as an approximation to 2’, one expects that prismatic dis-
sociation, and therefore edge dislocation mobility, to be high on the prismatic plane
for all models, as we expect. Following the results of Curtin et al. in table 3.5 who
I believe took the most careful treatment in calculating stacking fault energies of the
included authors, allowing for full volume and structural relaxation, one finds the
width of the basal and pyramidal edge dislocations, and therefore their mobilities, to
be comparable. The sd-model dissociation distances agree with these results. These
widths are not too dissimilar from the value of prismatic screw dislocation dissocia-
tion width. The basal screw dislocation for all models shows a very low mobility. This
agrees with explicit DFT calculations of basal screw dislocations, showing that the
ÈaÍ screw core is unstable and decays into a pyramidally dissociated core, even during
glide along the basal plane, prismatic/pyramidal dissociation is maintained [131].

3.3.3 Ti-O and Ti-H parameters

Results of the fitting can be seen in table 3.6, with the bond integrals and pair potential
as seen in figure 3.10.
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TiO2
Rutile Anatase Fluorite

d-TB sd-TB Expt d-TB sd-TB Expt d-TB sd-TB DFT
a (Å) 4.388 4.553 4.587a 3.629 3.772 3.782a 4.708† 4.854† 4.86b

c (Å) 2.827 2.932 2.954a 9.117 9.476 9.502a

V/Vtarget 0.8756 0.9780 1 0.8833 0.9919 1 0.9088† 0.9965† 1
Internal parameter u/a 0.314 0.303 0.305a 0.203 0.208 0.208a

Bulk modulus (GPa) 417.7 339.3 211±7c 369.3 283.6 179±2d 330.2‡ 342.3‡ 282b

Band gap (eV) 3.91 2.18 3.03e 4.78 2.96 3.20f

Ecohesive/f.u. (eV) –28.30 –25.31 –25.36h

Energy di�erences (mRy per f.u.):
E(rutile) – E(anatase) –28.1 –45.2 –1.29g

E(fluorite) – E(rutile)† 123.3 56.2 51.0h

TiH2
Fluorite

d-TB sd-TB Expt
a (Å) 9.566 9.324 8.356h

Ecoh/f.u. (eV) –14.562 –15.284 –14.844
Bulk modulus (GPa) 74.0 48.2 114.4h

† used in fitting with low weight.
‡ not included into fitting.
a Neutron di�raction, Ref. [184]. f Ref. [185].
b DFT LDA, Ref. [186]. g�H298, heat capacity measurements, Ref. [187].
c X ray di�raction, Ref. [188]. The actual target was set to zero.
d Ref. [189]. h DFT LDA, present study
e Ref. [190].

Table 3.6: Objective function results of Ti-O/Ti-H fitting, showing equilibrium crystal
structure, bulk moduli, and band gaps of TiO2/TiH2 bulk phases. Experi-
mental data was used to fit with the exception of fluorite TiO2/TiH2, where
DFT targets were used.
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Fig. 3.10: Bond integrals for Ti-O and Ti-H.

From table 3.6, we see the sd-model has better agreement with experimental and
empirical data than the d-model, with ≥ 2% and ≥ 10% deviations from the target
values in TiO2 respectively, excluding the bulk moduli and the band-gaps. This is
expected due to the fitting procedure. The lattice constants and internal parameters
are in good agreement with experiment [185]. There are discrepancies found in the
band gaps of the rutile and anatase phases compared to experiment, where one finds
they are smaller by 0.85 eV, and 0.24 eV respectively. These gaps, although reduced
compared to experiment and GW simulations, are assumed to be su�ciently wide for
defect (surface) states to be found within the gap. This is especially the case for rutile,
when compared to the DFT LDA calculations, as found in figure 3.11. The bulk moduli
of these phases are higher than expected by 60%, which is roughly twice the deviation
found in the Lozovoi et al. paper. These could not be improved upon in the fitting
of the Ti-O parameters, and were thus deemed to be due to the contribution of the
Ti-Ti interactions, which were additionally thought to be the reason for the structural
energy di�erence of the anatase phase deviating from the original parameterisation of
the model: anatase is found to be higher in energy than rutile, rather than marginally
lower, as found in DFT [186], however this does agree with experimental heat capacity
measurements, as found in table 3.6.
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Fig. 3.11: Bands for TiO2/TiH2 phases compared to DFT. Top row: Rutile TiO2 bands.
Middle row: anatase TiO2 bands. Bottom row fluorite TiH2 bands. d and
sd tight-binding shown compared to DFT. The DFT bands of the TiO2 bands
are shown with the O-s states in red, O-p states in orange and other orbital
characters (mainly Ti-d states) in blue. The DFT bands of TiH2 show the
hydrogen s states in red. Eigenvalue energies are in eV.

The bands resulting from the tight-binding parameters agree well with DFT, as
shown in figure 3.11. The splitting between the s, p and d states in TiO2 is qualitatively
similar to DFT, but the band gaps between the models, compared to DFT, are quite
di�erent between the d and sd models, as mentioned above. Bandwidths for the oxide
phases are generally larger than their DFT counterparts, but for the hydrides the
width of the d bands are smaller than what DFT finds, which can be attributed to the
smaller d-band with in the corresponding pure hcp titanium simulations compared to
DFT, see figure 3.3.
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Fig. 3.12: Unrelaxed adsorption energies of oxygen and hydrogen relative to 1.5c from the
Ti (0001) surface compared to LDA.

One finds qualitatively good agreement in the energy of adsorption of H/O species
on the (0001) surface relative to the reference state at a distance of 1.5c. The energy
minima found outside of the surface of the metal is reproduced for both oxygen and
hydrogen, see figure 3.12.

The amplitudes of energy associated with the penetration into the metal is well
produced by the Ti-H parameterisation, with some di�erences in behaviour between
the d-model and sd-model with respect to DFT for the hollow fcc site, when the H
species is very close to Ti. We see from observation of the corresponding charges of
hydrogen, figure 3.12 right, that the amplitudes of the charge correlate well to the
change of adsorption energy when the species in in the metal, with the rest of the
contribution to the energy coming from the variation of the Ti-H pair potential.

For oxygen, we see that the Ti-O pair potential dominates the electrostatic contri-
bution of the adsorption energy, as shown by the similar amplitudes of the adsorption
energy for both the d-model and sd-model when going through the hollow hcp site,
despite the large variation of the charge of oxygen in the sd-model compared to the
d-model. The larger reservoir of electrons available for charge transfer in the sd-model,
enables more Ti-O charge transfer, giving a larger Hubbard U penalty, resulting in
larger overall adsorption energies in the sd-model compared to the d-model.
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3.3.3.1 Water on titanium

t = 1 fs t = 90 fs t = 300 fs t = 400 fs

Species

Charge

Fig. 3.13: NVT simulation of water on titanium (0001) surface at 100K using the sd-model.
Original cells in top row, where grey denotes Ti, red O and white H. Cells
coloured by charges in middle row: red shows absence of charge (positive charge)
and blue denotes charge increase (negatively charged). Hydrogen gains charge
from Ti species, becoming H≠, dissociating from water, and subsequently pen-
etrating the titanium surface. The remaining OH group is adsorbed on the
surface. Bottom: temperature and energy variation in the MD simulation.
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As can be seen in figure 3.13, water was found to dissociate on the surface of titanium,
where an OH group would adsorb on the titanium surface, and the hydrogen, which
became H≠, would penetrate the first layer of titanium. Charge was transferred from
titanium to hydrogen, which caused the dissociation. This behaviour was seen on both
titanium-water interfaces in the simulation cell.

The model is shown to be reasonably stable in trials of molecular dynamics, as
shown in figure 3.13, bottom. The conserved quantity increases initially but it sta-
bilises, as does the temperature, during the equilbriation phase. A rather high charge
tolerance was used here: 1 ◊ 10≠3, and it has been shown in other test calculations,
with a decreased charge tolerance, ≥ 1◊10≠5 the conserved quantity does not increase.

3.4 Discussion
In the titanium parameterisations, one finds the d and sd-models to be rather similar.
Both models agree well with validation tests against DFT.

Local minima on “-surfaces suggest dislocation dissociations of the ÈaÍ and Èc + aÍ
screw dislocations from tight-binding will be in-line with DFT. The energies of stable
stacking faults are closer to those of DFT results than previous titanium tight-binding
models, in particular the d-model which predicts the narrow fi1 fault with only ≥
15 mJm≠2 di�erence from the DFT value. However, prismatic stacking faults are still
≥ 100 mJm≠2 lower than those expected by DFT, as found by previous tight-binding
parameterisations and empirical potentials. From these results, one expects atomistic
simulations to exhibit larger dissociation distances of ÈaÍ screw dislocations on the
prismatic plane with the d-model and sd-models, compared to DFT. With regards
to this specific parameterisation, the lower stable stacking fault energy could be due
to insu�cient short-range repulsion, as shearing the crystal along the prismatic plane
along the ÈaÍ direction, the stable prismatic fault corresponds to a configuration where
atoms are atop of one another.

Dissociation distance calculations considering edge dislocations suggest the mo-
bilities of basal and fi1 ÈaÍ edge dislocations to be comparable, with the d-model of
tight-binding replicating the DFT data of Curtin et al. well [166].

Rather surprisingly, the MEAM potential of Hennig et al. produces remarkably
similar dissociation distances to DFT for screw dislocations. Atomistic calculations
have shown this potential to exhibit screw dislocation core structures which are pris-
matically and pyramidally spread, akin to DFT, despite the erroneous ordering of the
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prismatic, and basal faults [191]. This is perhaps due to the flexibility of this MEAM
potential, which used cubic splines to determine the functional forms of which it is con-
stituted. These splines were not constrained or physically motivated. The functional
forms of the d and sd titanium tight-binding models, in contrast, were constrained
to certain forms motivated by physical insight, and therefore cannot reproduce arbi-
trary data it is supplied with, unlike the MEAM. The success of the MEAM potential
may suggest that in the fitting of tight-binding models for titanium, functional forms
with more parameters, such as sums of Goodwin-Skinner-Pettifor potentials, or even
splines, despite their poor second derivative properties, might be beneficial in pro-
viding su�cient flexibility to reproduce dissociation distances. Furthermore, perhaps
the inclusion of more varied data—such as vacancy formation energies and force data
from DFT molecular dynamics simulations, as used in the MEAM parameterisation—
is necessary to include in the objective function, supplying enough variation in the
local environment of titanium in the training data for it to generalise to situations far
from that on which it was trained. This is further supported by the recent success
of a Deep Potential (neural network parameterised) interatomic potential of titanium,
which replicates the DFT core structures, from parameterisation on DFT molecular
dynamics data, using a total of 11,948 datasets [192, 193].

However, one should note there is a di�erence in the philosophies in the tight-
binding approach used here and that of empirical/learned potentials. In tight-binding,
the use of DFT data for fitting is a means by which one can tune the physics-based
models of which it is composed—that of simple quantum interactions, polarisation et
cetera—such that one can gain both physical insight into, and predictions of, systems
of interest; on the other hand, empirical/learned potentials use DFT data as a means
to circumvent the large computational cost of DFT calculations; gaining scalability
at the cost of losing physical insight, due to the compression of all physics of the
system into a sum of environmentally-dependent energies. The latter does not have
a physics-based model to rely upon when extrapolating to unseen scenarios, as such
vast amounts of data is paramount to their success.

Comparing the pure titanium models to literature, we see that a simple d-model
may be more suited to bulk and dislocation modelling due to the elastic properties,
stacking faults and “-surface energies being closer to DFT than the sd-model, albeit by
a marginal amounts for bulk properties. The addition of s-electrons does not improve,
in this case, the fitting to the target data. This is similar to previous tight-binding
models, where the canonical d model fit the target data, and generalised better, than an
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sd model [54]. However, for application to dislocation-oxygen interactions in titanium,
the sd-model is preferred due to its explicit description of s-electrons.

Substituting the new Ti-Ti parameter sets in the Lozovoi and Paxton titanium
dioxide model [172], and subsequently refitting the Ti-O parameters, deviations from
the expected experimental/DFT quantities were found for both d and sd Ti-Ti models.
The band gaps of the TiO2 phases were impacted the most: the band gap of rutile
was decreased, relative to that of anatase. However the decrease is not expected to
significantly a�ect simulations of surface phases. As the gaps are larger than 2 eV,
the simulated titanium dioxide phases are still wide-bandgap semiconductors, and as
such, it is not expected that this discrepancy will a�ect the phenomena observed in
future TiO2 simulations.

In the section of parameter space searched for the bond integrals and the pair po-
tential of the Ti-O/Ti-H parameters, the above discrepancies could not be assuaged.
But, importantly, the cohesive energy, and relative cohesive energies between the vari-
ous phases in the fitting (–-Ti, fluorite TiH2 and rutile TiO2) was made commensurate
with the cohesive energies found from DFT, which was not apparent in the original pa-
rameterisation of the model. As such, the relative strengths of bonding for these phases
is expected to be similar to that of DFT. Therefore, it is only the cohesive strength of
pure titanium which is around ≥ 20% lower than expected, suggesting in simulations
which include Ti-Ti and Ti-O/Ti-H interactions, Ti-Ti bonds will be weaker relative to
the others in the system, when comparing to DFT. This could make solution energies
more negative and increase the dislocation-oxygen interaction energies. This could
also a�ect the amount of corrosion of the Ti surface in future electrochemical simula-
tions, due to less energy being necessary to break Ti-Ti bonds on the surface. But it
is uncertain as to how marked this e�ect will be, and if this deviation in cohesive en-
ergy would significantly alter solute-hardening/corrosion mechanisms and predictions
found from the model.

The adsorption energies of hydrogen and oxygen qualitatively agree with DFT, with
the Ti-H parameters almost exactly reproducing the depth and amplitude of energetic
oscillations upon insertion of hydrogen in hcp titanium. The Ti-O parameters show
di�erences between the d-model and sd-model due to the extra charge available in the
sd-model, but again, there is agreement in the general trends compared to DFT. The
depth of the adsorption energies suggest reasonable solution energies for H/O can be
obtained from these Ti-H and Ti-O parameters, if the energies upon deformation of
pure titanium are comparable to DFT.
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In the small NVT simulations of water on titanium an OH group adsorbs on the Ti
surface becoming OH≠. This is similar to DFT simulations of water on titanium, in
which an OH≠ is adsorbed on the titanium (0001) surface, but with a small potential
applied [194, 195]. However H≠ was not seen to penetrate the surface layer of the metal
in these DFT simulations, suggesting that the barrier to entry of the surface, as seen in
figure 3.12, is larger in the case of the basis set used in vasp compared to the fp-lmto
DFT calculations seen here. These calculations should be repeated using the fp-lmto
code, to verify that the behaviour seen in these tight-binding simulations is correct.
It is also stated in the aforementioned papers that the dissociated species is H+ in
DFT, despite no mention of either Bader or Mulliken charge analysis being performed
within the vasp calculations themselves, as such, a comparison of the actual charges
on the species cannot be performed. In addition, if such an analysis is performed in
the vasp calculations, the charges quoted will not be integer. Again, validation tests
by DFT calculations, in conjunction with some form of charge analysis, need to be
performed to confirm whether the behaviour seen is reasonable, and to suggest reasons
for its deviation.

These simulations have shown that the model is reasonably stable in molecular
dynamics. But perhaps the large charge tolerance/amount of charge transfer included
in the model is too large, which gave rise to the di�erences in behaviour compared to
DFT. This may suggest a limit of the model’s transferability, however these simula-
tions cannot be experimentally verified, leaving the final verdict on transferability as
inconclusive.

3.5 Conclusion
In conclusion, the fitting of Ti-Ti, Ti-O and Ti-H parameters was successful, resulting
in the first polarisable-ion tight-binding model which can describe bulk Ti along with
TiO2, TiH2 and H2O.

The Ti-Ti parameter set gave good agreement with experimental data for lattice
constants and bulk properties of titanium, but the bulk moduli and band gaps of tita-
nia phases su�ered somewhat upon integration, even with refitted Ti-O bond integrals.
All band structures were well replicated, with reductions in the band width of Ti d

states compared to DFT and band gaps of TiO2 phases compared to experiment. The
best TiO2 results came from the sd-model Ti-Ti parameters, as expected.

Rutile TiO2 and fluorite TiH2 cohesive energies were found to agree well with DFT,
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with anatase TiO2 coming out to be less stable than rutile TiO2, in contrast to DFT.
The cohesive energy of pure titanium matches the experimental result, which is less
negative than that found by ab-initio methods, resulting in a reduction of the relative
bond strength of titanium compared to TiO2 and TiH2. The vacancy formation energy
of pure Ti is 30% higher than DFT, even though the cohesive energy per atom of pure
Ti is lower than that of DFT, suggesting exaggerated charge transfer, which indicates
that surface energies might be larger.

Of importance are the gamma surfaces and stable stacking fault energies, in which
one finds the correct morphology and ordering respectively, for the d-model, which
has not been seen in modern titanium tight-binding models. The stable stacking
fault energies suggest large dissociation distances of the ÈaÍ screw dislocation on the
prismatic plane, implying a reduction in the critical resolved shear stress of the tight-
binding models on the prismatic glide plane compared to DFT. The relative mobilities
of ÈaÍ screw dislocations, estimated by the calculation of other dissociation distances,
predict that basal and pyramidal edge dislocations are of similar mobility, which is
markedly less than that of prismatic edge dislocations, but somewhat comparable to
prismatic screw dislocations.

Adsorption energies show upon insertion of H or O in pure titanium, similar reduc-
tions in energy are found compared to DFT, implying a potentially good agreement
of solution energies. Most of the e�ect of insertion is determined by the repulsive pair
potential rather than electrostatic contributions from charge transfer.

The first tight-binding simulations of water on titanium show a dissociation of
water due to hydrogen gaining charge from titanium on the surface. The remaining
OH group adsorbs on the surface with the H≠ ion penetrating the charge depleted Ti
surface. This behaviour was similar to DFT simulations of water adsorption with a
small applied potential [194]. The deviation demonstrates a potential limit to trans-
ferability in this case, but more DFT/experimental work is necessary to validate this
behaviour; to provide a final say on transferability.

With the correct ordering of stacking fault energies, and solution energies which are
expected to be comparable to ab-inito methods, one can perform defect calculations
pertinent to plasticity in titanium. In the next chapter, this will be achieved, and used
as a means by which we can compare these simple tight-binding models to DFT and
empirical data, thereby determining their predictive limits, while gaining an intuition
for such systems from the physics included within these models. Defect calculations
are good validation tests, in that they take the models well outside of the training
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data upon which they were fit, thereby testing the transferability of the models.
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Chapter 4

Modelling of defects in titanium

4.1 Introduction
Titanium alloys are ubiquitous in aerospace applications, due to their high strength-
to-weight ratio and corrosion resistance among other properties [1]. The high strength
of these alloys arises from the resulting microstructure—which is highly dependent on
solute content, solution and ageing temperatures/times, amount of work et cetera—
and the influence of solutes on plasticity within the grains themselves, such as solute-
dislocation interactions. However, with respect to certain alloying elements, the mech-
anistic origin of their influence on plasticity is not well understood. A well-reported
example of this is the action of oxygen in titanium alloys, in which there are dramatic
changes in the hardness, ductility, and yield strength of the material, which is not
in-keeping with classical theories of solute hardening [12, 15, 26, 28].

The plasticity of titanium at low temperature is controlled by the motion of screw
dislocations. This has been evidenced in the work of Naka et al. [12], who observed a
large lattice friction acting on ÈaÍ screw dislocations, which were found to have a much
lower mobility compared to that of edge dislocations, implied by the observations of
long screw segments, as seen in the work of de Crecy [183].

At low temperatures, wavy slip of screw dislocations has been reported [12, 15, 183],
which show a propensity for screw dislocations to cross-slip from prismatic to pyra-
midal slip planes, which has been hypothesised to be controlled by a kink-pair mech-
anism [12, 31] and/or by locking-unlocking [16–19], where a sessile dislocation core is
the ground state, and a glissile core is metastable. A diagram of these mechanisms
are found in figure 1.2.

The stability of core structures on the prismatic and fi1 planes have been cor-
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roborated by DFT calculations of titanium screw dislocations [19, 26, 75, 191, 196],
showing screw cores which are either prismatically or pyramidally spread, with the
latter being deemed the most stable. However, whether the pyramidal core is in-
deed the most stable is contentious. Tarrat et al. [132, 162] found both pyramidal
and prismatic dissociation of ÈaÍ dislocations using the siesta code, with only a
�EPris≠Pyr = 5.5 ± 16.8 meV/Å di�erence in the excess core energies. Pwscf calcula-
tions by Clouet et al. [19], found that the ground state ÈaÍ screw dislocation structure
in pure titanium is pyramidally dissociated, with other core structures, notably that of
a fully prismatic dissociation, being metastable, with the di�erence in the core energies
being �EPris≠Pyr = 4.7±13.6 meV/Å. Liang [196], found that a prismatic dissociation
was the most stable from an initial configuration, but with modification of the input
elastic constants in the anisotropic elasticity solutions used to generate the dislocation
displacement field, a lower energy pyramidally spread screw dislocation in DFT was
obtained, with a di�erence between the cores as �EPris≠Pyr = 15.0±18.0meV/Å using
vasp. The errors stated for the core energy di�erences of Liang and Clouet et al. were
estimated from the per-atom error given by Tarrat et al. [133], as the errors were not
stated in their respective texts. The total error for a given cell was obtained by the
product of the number of atoms used in the simulation with the per-atom error. Note
that the error in core energy di�erences is larger than the stated di�erence in core
energies, hence it cannot be said with certainty which is the most stable.

It has been shown in titanium that there are dramatic increases in the yield strength
of the alloy with oxygen content in both nanopillar compression [26] and uniaxial
tensile tests [28]. These increases do not follow the

Ô
c concentration dependence,

as in the classical theory of solid solution strengthening of Fleischer [12, 29] in the
Friedel (strong-pinning) limit, which applies when the distance of interaction between
the solute and the dislocation is su�ciently small [26, 30, 197, 198]. Oxygen has
been shown to inhabit octahedral sites in the vicinity of screw dislocation cores, as
evidenced in HAADF-STEM images, and basal interstitial sites in lightly strained
titanium, which have been suggested to be at the intersection of several dislocations
[26]. As evidenced by Barkia et al. and Yu et al. [15, 26], screw dislocations are
modified more by oxygen content than near-edge dislocations. In Ti-0.3wt% O alloy,
screw dislocations have a compact core structure where oxygen is found in adjacent
prismatic planes. The extent of the core is far smaller than the extended in-plane
displacement as found in higher purity Ti-0.1wt% O alloy. Oxygen content was not
found to modify near-edge dislocations found in Ti-0.1/0.2/0.3wt% O alloy, where
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oxygen has been found on the tension side of these dislocations, close to the core.
As such, it has been surmised that the strengthening e�ect of oxygen is due to screw
dislocation-oxygen interactions, given the influence of oxygen on screw core structure,
and the greater mobility of edge dislocations compared to screw dislocations.

ab-initio calculations of oxygen-screw dislocation interactions have consistently
shown observations of a repulsive interaction between oxygen and screw dislocations
[26, 75, 196]. In calculations seen thus far, oxygen causes the screw dislocation to
locally cross-slip onto a basal or fi1 plane. This causes jogs to form on the dislocation
line, which are necessarily of edge character, limiting the glide of these jogs on their
basal or fi1 planes respectively. These act as pinning points for these dislocations. See
figure 4.1, for a diagram.

Fig. 4.1: Diagram of oxygen-screw dislocation interaction, forming a jog dipole on the basal
and first-order pyramidal planes. Dashed lines correspond to fi1 edge segments,
and dot-dashed lines correspond to basal edge segments. Oxygen causes cross-slip
of dislocation at a, and then binds on the tension side of a jog segment at b.

It was first observed by Williams [24], that there exists a wavy-to-planar transi-
tion of slip in titanium, of which prevalence of planar slip increases with decreasing
temperature and increasing oxygen content. Chong et al. extended this study, and
observed a preference for planar slip with increasing oxygen content, decreasing tem-
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perature, and increasing strain rate [28]. They attribute this to an interstitial shu�ing
mechanism (ISM), where oxygen causes cross-slipping events when dislocations move
at low velocities, or when oxygen is fixed due to a lack of available energy for migra-
tion. Slip-plane softening (preference for planar slip) occurs when oxygen shu�es to
a nearby hexahedral site, allowing for screw dislocations to move along the prismatic
slip plane without being hindered by octahedral oxygen, which would give a large
stacking fault energy, hindering dislocation motion, see figure 4.2. At higher temper-
atures, when oxygen di�usion is active, the oxygen can hop back from the hexahedral
site to the octahedral, causing cross-slip. At high strain rates, oxygen cannot hop out
of the hexahedral site, due to the proposed high flux of these screw dislocations past
the same oxygen, as such oxygen will likely be in the preferred hexahedral site from a
higher frequency of shu�ing events. The preference for oxygen to be in the hexahedral
site has been determined by DFT “-surface calculations of both Yu et al. [26] and
Kwasniak et al. [168].

Fig. 4.2: Part of interstitial shu�ing mechanism of Chong et al. to explain slip planarity
in titanium [28]. Dislocation shown by §, with direction of glide given by dashed
arrows. At a high strain rate and low temperature, dislocations can pass by the
oxygen on the prismatic plane, shu�ing the oxygen from an octahedral site a), to
a hexahedral site b), allowing for continued slip on the prismatic plane.

It is interesting to note that there has been no exploration in the literature of what
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happens to oxygen, and the resulting e�ects on dislocation motion, after these cross-
slip events occur. Oxygen has an attractive interaction between edge dislocations on
the tension side, and a repulsive interaction with the compression side. On initial
formation of the jog, there is no net binding energy to these edge segments, as such,
the oxygen is not in a stable equilibrium with the jog dipole, as the system could
lower its energy by allowing for oxygen to bind on the tension side of one of the
jogs, by going from position a to b in figure 4.1. Furthermore, once bound, there
will be a repulsive interaction between oxygen and the other jog of opposite sign,
which can oppose jog-dipole annihilation. It is known that with small jog segments,
upon action of a shear stress to move the whole dislocation line, there is a net force
on the jogs which acts to annihilate them, due to dislocation bow out from the jog
pinning points [199]. It is also likely that these jog segments would be small given the
large expected Peierls stress on the basal/fi1 planes for screw dislocations. Oxygen-
edge dislocation interactions could therefore stabilise jogs when oxygen di�usion is
active, or after periods of quiescence, where oxygen can equilibriate with the edge
dislocation. The di�usion barriers for oxygen migration could also be reduced around
the dislocation core, as has been found in atomistic simulations of interstitial di�usion
around dislocation cores in other metals [200, 201]. The stabilisation of jogs could
allow for superjogs to form due to: the inhibition of jog glide which can discourage
jog-dipole annihilation; the enhancement of screw dislocation cross-slip through the
continued repulsive interaction of oxygen with the screw segment and the annihilation
of screw dislocation segments upon further cross-slip and dislocation bow out [11, 202].
Indeed, it has been observed by Barkia et al. [15] that screw dislocations undergo jerky
flow in both pure and oxygen-rich titanium, but whereas the origin of the jerky flow
of screw dislocations in the former is due to the current, albeit contested, consensus of
the locking-unlocking mechanism due to a metastable prismatic dislocation core [19],
jogs and superjogs were formed with higher oxygen content which resulted in much
shorter jump distances between pinning points, giving an additional character to the
intermittent glide phenomena exhibited. Superjogs were seen to form and undergo loop
expansion, causing dislocation multiplication. This was proposed to be due to cross-
slip and consequent bowing of the jogged screw segment. This mechanism allowed
for the formation of edge dipoles by the annihilation of screw segments. This work is
supported by the experimental work of Williams, who found jogged screw dislocations
and dislocation debris with higher oxygen content in titanium [24] and observations of
“bursts” of dislocations with an increase of oxygen content in nanopillar compression
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tests [26]. The binding energy of oxygen to these edge segments is important, as
seen in the glide of superjogs in zirconium, another hcp transition metal with the
same valence at titanium, where the glide velocity of the superjog is seen to be a
linear function of the driving stress, consistent with a solute-dragging mechanism [203],
influencing plasticity. The climb of jogs is an important consideration in creep regimes,
with models of creep rate in titanium being controlled by jogged screw dislocations
[204, 205].

The focus of this chapter is to investigate the tight-binding models which were
created in section 3, to see:

1. How does tight-binding compare to other methods for the calculation of de-
fect properties in titanium, such as solutes, dislocations and dislocation-oxygen
interactions?

2. What does tight-binding predict for the mechanistic origin of the hardness in-
creases of dislocations with oxygen content?

3. How does this compare to literature on the hardening mechanisms in titanium?

4.2 Methods

4.2.1 Oxygen/hydrogen interstitials

To further test the validity of the tight-binding models fitted, one calculated the
solution energy of oxygen and hydrogen in various interstitial sites.

Within the scheme of tight-binding used, the energies one obtains are the cohesive
energies, Ecoh = Etot ≠ Efree, where Etot is the energy functional we are approximating
(either Harris-Foulkes or Hohenberg-Kohn-Sham) and Efree are the energy of the “free
atoms” within the tight-binding scheme. These free atom energies are those which
correspond to the initial on-site energy levels neglecting spin-polarisation.

In a standard calculation of the solution energy, upon the insertion of a species into
a lattice in DFT, one calculates the total energies of the relaxed cells with and without
the solute—E(TiNX) and E(TiN) respectively—and subtracts the reference energy of
the free atom calculated from DFT or other means (which accounts for if the exchange-
correlation functional used includes spin-polarisation or not). In tight-binding, one can
simulate isolated atoms, but the energies one obtains are not accurate, as the energy
consists of a sum of occupied on-site levels, which are fit to reproduce properties of
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bonding in a solid. However, one can work around this poor description of free atom
energies by use of the tight-binding cohesive energy. To calculate a solution energy
using the cohesive energy, one can use half of the experimental dissociation energy
of the species of interest for a reference [81, 206]. Here, we use half the dissociation
energy of O2/H2 dimers 1

2Ediss.(X2), which furnish us with the equivalent reference
energy, where Ediss.(O2) = ≠5.162 eV [207] and Ediss.(H2) = ≠4.75 eV [208] which
agrees with quantum chemistry results [140]. We can then use the standard equation

Esol(X) = Ecoh(TiNX) ≠ Ecoh(TiN) ≠ 1
2Ediss.(X2), (4.1)

where Ecoh(TiNX) and Ecoh(TiN) correspond to the cohesive energies of the cells men-
tioned above. The perfect cell used in these calculations was a 5 ◊ 5 ◊ 4 cell of 200
atoms. The defected cells were created by simply placing an interstitial in the site of
interest. All calculations were performed with a 6◊6◊8 k-point mesh with relaxation
performed until all forces were below 1 ◊ 10≠5 Ry/bohr.

4.2.2 Screw dislocations in pure titanium

4.2.2.1 Relaxation

As mentioned in section 4.1, the ÈaÍ screw dislocation in titanium is that which controls
the plasticity of the alloy. The core structure—the displacement field of the resulting
dislocation upon relaxation—determines the potential dynamics of the dislocation,
e.g. the glide planes upon which it prefers to move. As such, determining all the
di�erent stable and metastable core structures is an important validation test for the
titanium tight-binding models parameterised in chapter 3.

There have been no titanium tight-binding models in the modern literature, which
have been able to reproduce the core structures of the of the ÈaÍ screw dislocation as
seen in experiment. The pioneering work of Legrand [119, 120] found the correct pris-
matic dissociation using the recursion method, with just dd‡ and ddfi bond integrals,
despite their ratios strongly deviating from the canonical band theory of Andersen
[139]. All other tight-binding models, which have explicitly modelled dislocations
thus far, notably the bond-order potentials of Girshick and Pettifor [125, 154] and
Znam [164] have not exhibited the correct dissociation, finding basal dissociations for
the ground-state, like that of EAM potentials [132], despite the basal core structures
being high energy and unstable, as seen in the DFT work of Kwasniak and Clouet
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[131]. Pyramidal or prismatic ground-state cores are preferred, as shown in DFT
calculations and experimental considerations [12, 15, 17–19, 21, 24, 132, 133, 183].

Fig. 4.3: Schematics of dislocation simulation methods. Left: quadrupolar arrangement of
dislocations in a simulation cell (grey square). This arrangement minimises the
stress experienced by each dislocation in a periodic simulation. Cell vectors Ų1
and Ų2 are shown; Ą defines the cut plane between the dipoles. The dislocation
positions, and their corresponding Burgers vector direction, are denoted by the
symbols ¢ and §, which are antiparallel to each other. Tilt components added to
cell vectors to accommodate for the plastic strain are not shown. Right: cluster
method, where atoms are displaced according to the displacement field from the
screw dislocation at the centre of the cluster, denoted by “§”. Atoms in the annulus
R2 ≠ R1 are fixed in position to the anisotropic elasticity solutions. Within R1,
all atoms can relax. Periodicity is only imposed in the Z direction.

To determine the core structure of screw dislocations, there are multiple methods
one may use, as seen in figure 4.3.

The cluster method, figure 4.3, right, simulates a single screw dislocation. Typi-
cally, a cylindrical disc of atoms, with depth of a Burgers vector, is created, in which
a dislocation is placed in the centre. Periodicity is only imposed along the direction of
the dislocation. The disc is split into two regions: a central region in which atoms are
able to fully relax, and the remaining annulus around the former, in which atoms are
fixed to the displacements arising from the anisotropic elasticity solutions. The thick-
ness of the outer region is typically chosen to be just larger than the cuto� for atomic
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interactions, such that the surface does not influence the relaxation of the dynamic
region [209]. This simulation method is suitable for methods which can simulate a
large number of atoms, as the boundary conditions of linear elasticity become more
appropriate with larger cylinder radius; at smaller cell sizes, the boundary conditions
can cause insu�cient dislocation core relaxation [209].

In the cluster simulations performed in this chapter, one used cells which had
R1 = 12ahcp and R2 = 15ahcp, resulting in cells of 936 atoms: 728 atoms in the
dynamic region and 208 atoms in the fixed region. The k-point mesh was 1 ◊ 1 ◊ 30.
The system was relaxed to a force tolerance of 1 ◊ 10≠5 Ryd/bohr.

The most prevalent method for dislocation simulation in DFT calculations is that
of the periodic quadrupolar cell, in which a cell is constructed with a dislocation
dipole, two dislocations of opposite Burgers vector, such that it, along with its periodic
images, form a quadrupolar array of dislocations, see figure 4.3, left. This configuration
minimises the stress which dislocations experience and allows them to relax without the
imposition of fixed boundary conditions [155, 209]. With the inclusion of a dislocation
dipole, a plastic strain is introduced into the cell, which results from the Burgers vector
displacement introduced along the area swept out by the dislocation dipole cut plane
[209]:

Áplastic
ij

= biAj + bjAi

2� , (4.2)

where bi and Aj are components of the Burgers vector and the dipole cut plane normal
respectively and � is the periodic supercell volume. This results in a back-stress,
which can cause the dislocation dipole to annihilate. To accommodate this, the cell is
strained by an opposing elastic strain Á0

ij
= ≠Áplastic

ij
.

One must further modify the initial displacements which come from the dislocation
dipole: the total displacement field generated from the two dislocations is not periodic.
Artificial stacking faults are introduced at the edges of the simulation cell, which could
inhibit relaxation. A correction term, found by Bulatov and Cai [209, 210], corrects
for this by subtraction of the displacement fields from dipoles in the periodic array,
and accounting for a conditionally convergent sum by measurement of a linear error
term in the displacement.

The periodic displacement one wishes uperiodic(r) is related to the sum of displace-
ments resulting from periodic images usum(r). For a quadrupolar array of screw dis-
locations, where the only non-zero displacement components are uz(r)

uperiodic
z

(r) = usum
z

(r) ≠ s · r, (4.3)
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where s is the linear correction term to be determined and

usum
z

(r) =
ÿ

Rimages

uz(r ≠ R), (4.4)

where uz(r ≠ R) is the total displacement of the dislocation dipole from a periodic
image which is at R = n1U1 + n2U2, where n1 and n2 are integers and U1 and U2

are the x/y lattice vectors of the periodic simulation cell, which will be defined later.
The correction term was determined by measuring s at four points in the simulation
cell by use of the expression

usum
z

(r + Ui) ≠ usum
z

(r) = s · Ui, (4.5)

which allows for calculation of the periodic displacement from equation (4.3). All
summations in this thesis were carried out with ni œ [≠30, 30], which gave convergence
in the components of s as ≥ 1 ◊ 10≠6 compared to a large truncation limit of ni œ
[≠50, 50].

The quadrupolar cells used in this thesis had the “S” configuration, detailed by
Clouet [155]. To construct this, dislocations of opposite Burgers vector had the initial
dislocation coordinates placed at r1 = 1

4(U1 + U2) and r2 = 3
4(U1 + U2), where

U1 = n1
2ahcp[101̄0], U2 = mchcp[0001] and U3 = lb = lahcp[12̄10]/3 are the lattice

vectors of the cell. The parameters n = m = 12 in all simulations, with l = 1 for
initial dislocation relaxations. The dislocations had their cut plane along the diagonal
towards the other dislocation centre. The cut plane normal A was obtained by a fi/2
rotation of the vector joining the dipole, D = 1/2(r1 + r2). For the relaxation of
dislocations, a 3 ◊ 3 ◊ 30 k-point mesh was used for the 576 atom cell with l = 1,
giving an error compared to a mesh size of 5 ◊ 5 ◊ 50 of ±1meV.

Dislocation excess energies were calculated as in Tarrat [133].

Eexcess = Edisl. ≠ Eperfect, (4.6)

where Edisl. is the energy of the dislocated cell, and Eperfect is the energy of the perfect
cell prior to the inclusion of a dislocation.

Following each of these prescriptions one can obtain simulation cells of dislocations
which can be subsequently relaxed. However, there still remains the choice of where
to centre the screw dislocation(s). As noted by Tarrat et al. [132, 133], for the ÈaÍ
screw dislocation in hcp, the di�erences in the choice of the elastic centre give rise to
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di�erent dislocation core structures. As such, dislocation relaxations were performed
for each of the six di�erent elastic centres, as done by Tarrat [133].

4.2.2.2 Peierls Stress

Fig. 4.4: Diagram of cell used to calculate Peierls stress.

The threshold resolved stress on a glide plane upon which a dislocation undergoes
glide is the Peierls stress.

To find the Peierls stress from atomistic simulations, a method similar to Chen [211]
and Trinkle [191] was followed: one incrementally applied strain and relaxed a cluster
simulation cell containing a pre-relaxed dislocation to find the critical strain necessary
to enact glide of the dislocation. For the Peierls stress on the prismatic plane, a
simulation cell was constructed from two semi-discs of atoms, a top half and a bottom
half, each with the same radii as in 4.2.2.1, R1 = 12ahcp and R2 = 15ahcp. A 1c thick
layer of titanium joined the two semicircles, elongating the cell along the Y = [0001]
axis, as seen in figure 4.4. The bulk and dynamic regions were commensurate between
the two semicircles, where the aforementioned radii became the widths on the x-axis
between which atoms were fixed to the anisotropic elasticity displacements, and the
rest were dynamic. A dislocation was placed at the centre of the top semicircle and
then relaxed using the same tolerances found in 4.2.2.1.

The resulting cell was then given an Áxz strain, in increments of 1 ◊ 10≠4, resulting
in the imposition of the stress, by Hooke’s law, ‡ij = CijklÁkl, as 0.0001Crot, where Crot

is the elastic constant which has been rotated into the dislocation coordinate system
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which is pertinent to the applied strain. The total strain increment necessary to move
the centre of the dislocation to the centre of the other semicircle, was used to calculate
the Peierls stress.

The dislocation centre was determined by di�erential displacement maps using an
in-house code which followed Itakura et al. [76]. These figures show the displace-
ment of atoms around a dislocation, where arrows point from one column of atoms
to a neighbouring column if the neighbouring column has a larger di�erential dis-
placement. The di�erential displacement was determined by first taking the minimum
image convention for the atoms in the supercell for the displacement component of
interest: where atoms only interact with the particles in the image with the smallest
displacement. From the resultant cell, the di�erential displacement was calculated
from the atomic displacements by the equation uk

ij
= (uk

i
≠ uk

j
)/b where uk

ij
is the

di�erential displacement for component k of the displacement vector ui = (ux

i
, uy

i
, uz

i
).

The requirement of |uij| Æ 1
2 was always satisfied. A closed circuit of di�erential dis-

placement arrows encapsulates the dislocation core—this is equivalent to a Burgers
circuit.

The original elastic constant matrix in 6 ◊ 6 Voigt form, in the reference hcp
coordinate system is:

C =

S

WWWWWWWWWWWWU

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

T

XXXXXXXXXXXXV

(4.7)

Transforming it into the dislocation coordinate system of a prismatic screw, by the
rotation

Rprismatic =

S

WWWU

1 0 0
0 0 ≠1
0 1 0

T

XXXV (4.8)
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gives

Crot. =

S

WWWWWWWWWWWWU

C11 C13 C12 0 0 0
C13 C11 C13 0 0 0
C12 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C66 0
0 0 0 0 0 C44

T

XXXXXXXXXXXXV

. (4.9)

4.2.3 Screw dislocation-oxygen interactions

From the relaxed core structures, one can insert oxygen into various octahedral sites
to see how oxygen changes the dislocation core structure, to reveal potential hardening
mechanisms with oxygen content in titanium.

We follow a method similar to that of Chaari et al. who performed oxygen-screw
dislocation interactions in both titanium and zirconium using DFT [74, 75]. Starting
from the relaxed cell of a dislocation dipole, the cell was repeated along the dislocation
line to l = 3 giving U3 = 3b. Within the central layer, oxygen was inserted into
various octahedral sites around the dislocation at various distances on the prismatic
glide plane and on adjacent prismatic planes. A single oxygen was placed next to both
dislocations, such that during the simulation the reaction of each dislocation would
be similar, thereby keeping the quadrupolar dislocation array balanced. Relaxation of
this cell was performed using a 2◊2◊10 k-point mesh to the same 1◊10≠5 Ryd/bohr
force tolerance. It was verified that there was no significant di�erence between the
core structures found using the cluster method and the quadrupolar method.

4.2.4 Edge dislocation-oxygen interactions in anisotropic elas-
ticity

As will be shown in section 4.3.3, oxygen interactions with screw dislocations are re-
pulsive, and hence screw dislocations will try to avoid oxygen. If there is avoidance by
cross-slip—where the screw dislocation shifts onto an adjacent plane—basal/pyramidal
edge segments will be created. The binding of oxygen to edge dislocations therefore
becomes an important interaction in discerning how these edge segments, which be-
come the primary pinning points of the dislocation, move: if there is a strong binding
of oxygen to edge dislocations, and the migration barrier for oxygen to jump to the
tension side of the edge dislocation is low/active, then the jog segments are pinned by
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the oxygen. This can influence the motion of screw dislocations, and plays a role in
dislocation creep [204, 205].

There is a dearth of work in the literature pertaining to atomistic calculation of
edge dislocations in titanium in general, and there has been no work, to the knowledge
of the author, pertaining to oxygen interaction with fi1 or basal edge dislocations.
For the purposes of comparing the titanium tight-binding models and to DFT, one
therefore used anisotropic elasticity theory, from which one can directly obtain the
binding energies of oxygen to edge dislocations from the results of structural and
volume relaxation of oxygen interstitials, by calculation of the elastic dipole tensor.
as has been achieved for carbon in iron [212–215].

Relaxations of oxygen in the most stable interstitial site in hcp titanium, the
octahedral site, were used to determine the elastic dipole tensor. After an initial
structural relaxation was performed for the TiNOoct. and TiN cells, with fixed lattice
parameters, the volume was optimised by variation of the lattice vectors, using the
same charge and force tolerances, allowing again for full structural relaxation upon
a lattice vector change. Due to the symmetry of the hexagonal cell, the px and py

lattice vectors were changed together, while the pz vector was varied independently.
The optimal lattice vectors were found using a grid search where the px/y and pz

lattice parameters were changed between ±3% or ±4%, for the 3 ◊ 3 ◊ 2 and 4 ◊ 4 ◊ 3
cells respectively in increments of 1.5% or 2.0%. A fourth order 2D polynomial was
fitted to the results, from which the minimum energy lattice vectors were estimated.

From the volume optimised cells, one can calculate the elastic dipole tensor of
an interstitial. Following Bacon, Barnett and Scattergood [169] and Clouet [155], in
continuum elasticity theory, one can model an interstitial in a lattice as an array of
point forces from the interstitial defect position which act on the host material. The
displacement arising from the point forces of the defect can be expressed as the sum of
a Green’s function, expanded in multipole moments, in product with the corresponding
moments of the point force array. The elastic dipole tensor, Pij, is the first moment
of the point force array.

In a periodic atomistic simulation involving a point defect, if one allows the cell
vectors to change, the cell takes on an homogeneous strain Áij to accommodate for the
strain generated by the point defect. In elasticity theory, applying a strain to a body
with a point defect gives rise to an energy EÁ which is that of the self-energy of the
body, and the interaction with the elastic dipole of the interstitial:
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EÁ = 1
2V CijklÁijÁkl ≠ PijÁij, (4.10)

where V is the volume and Cijkl is the elastic constant tensor. The strain that min-
imises this energy gives [212, 214]

Pij = V CijklÁkl. (4.11)

For an octahedral site in the hcp lattice, the elastic dipole tensor is diagonal and
in the usual hcp coordinate system, has P11 = P22 giving [216]:

Phcp =

S

WWWU

P11 0 0
0 P11 0
0 0 P33

T

XXXV . (4.12)

On rotation of the tensor into a basal edge dislocation coordinate system, where X =
[112̄0], Y = [0001] and Z = [1̄100], were the Z-axis is parallel to the dislocation
line-sense, by the rotation matrix

Rbasal =

S

WWWU

1 0 0
0 0 ≠1
0 1 0

T

XXXV (4.13)

using the relation TÕ = R · T · RT for a rank 2 tensor T, one obtains the dipole tensor
in the dislocation coordinate system as

Pbasal =

S

WWWU

P11 0 0
0 P33 0
0 0 P11

T

XXXV , (4.14)

Similarly, one can rotate the tensor into the dislocation coordinate system of an
edge dislocation with a first-order pyramidal glide plane using the rotation matrix

Rfi1 =

S

WWWU

1 0 0
0 cos – ≠ sin –

0 sin – cos –

T

XXXV (4.15)

where – = arccos 2qÔ
3+4q2

, where q is the c/a ratio, giving the dislocation coordinate
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system as X = [112̄0], Y = [101̄1] and Z = [112̄3], where the dislocation line is parallel
to Z.

One can obtain the binding energies of an edge dislocation directly from elasticity
theory using these expressions for these dipole tensors where:

Eedge
bind. = P disl.

ij
Áedge

ij
, (4.16)

where Áedge
ij

is the strain field generated by an edge dislocation in the dislocation co-
ordinate system of interest. As in the elasticity calculations of carbon in iron by
Douthwaite [215] and others [212, 217], the strain field of the dislocation can be ob-
tained from the stress tensor in the dislocation coordinate system, ‡edge

kl
resulting from

the anisotropic elasticity solutions by the relation

Áedge
ij

= Sijkl‡
edge
kl

, (4.17)

where Sijkl is the compliance tensor in the dislocation coordinate system, which can be
obtained by inversion of the corresponding 6 ◊ 6 elastic constant matrix in the Voigt
representation [7]. The elastic constant matrix for the basal plane is exactly that found
in equation (4.9), as expected due to the transverse isotropy of hcp crystals. For the
fi1 ÈaÍ edge dislocation, the elastic constant matrix of the sd-model becomes, in 6 ◊ 6
Voigt form:

Crot.
fi1 =

S

WWWWWWWWWWWWU

176.2 92.7 68.1 19.2 0 0
92.7 171.8 69.6 0.8 0 0
68.1 69.6 189.5 ≠14.6 0 0
19.2 0.8 ≠14.6 62.6 0 0

0 0 0 0 47.4 ≠5.9
0 0 0 0 ≠5.9 39.7

T

XXXXXXXXXXXXV

, (4.18)

where the constants are in GPa.
Elasticity theory has limitations, and cannot be applied close to the dislocation

core due to the 1/r divergence of the dislocation stress field with decreasing distance
to the dislocation core. As such, a core radius, the radius beneath which elasticity
theory cannot be relied upon, must be defined, and was taken to be equal to half
the dissociation distance found in table 3.5, giving the radius of the core region to
be rc = ’ = ddiss./2(1 ≠ ‹), where ddiss. is the dissociation distance and ‹ = 0.315
is Poisson’s ratio. This agrees with arguments in Hirth and Lothe, and Argon that
the core radius can be given by the core width [7, 11]. As the dislocation core width
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of {0001} ÈaÍ and {101̄1} ÈaÍ edge dislocations are smaller compared to that of the
prismatic screw dislocation, it is expected that the binding energy of oxygen can be
estimated reasonably well close to the core.

4.3 Results

4.3.1 Oxygen/hydrogen interstitials

The solution energies, without volume relaxation, for oxygen and hydrogen in various
interstitial sites are shown in tables 4.1 and 4.2 respectively. It should be noted, in
the DFT results there was additional volume relaxation performed, as such, these
solution energies are upper bounds, and here to illustrate the behaviour of the Ti-
Ti/Ti-O models in comparison to DFT. Results with volume relaxation for oxygen in
the octahedral site are presented in section 4.3.4.

Site Esd≠TB
sol [eV] Ed≠TB

sol [eV] EDFT
sol [eV]

Tetrahedral Unstable (O) Unstable (O) Unstable (H) [218] –4.37 [219]
Octahedral –5.48 –6.78 –5.61 [218] –5.54 [219]
Hexahedral Unstable (O) Unstable (O) –4.38 [218] –4.36 [219]
Basal Oct. Unstable (O) Unstable (O) Unstable (N/A) [218] –2.22 [219]
Crowdion Unstable (O) Unstable (O) –4.30 [218] –3.93 [219]
Basal C Unstable (O) Unstable (O) –4.37 [219]

Table 4.1: Oxygen solution energies in various interstitial sites using the tight-binding
model which was fitted in chapter 3. Unstable (X) indicates that there is a
decay of the interstitial from the initial site to site X, where X can be an octa-
hedral (O) or hexahedral (H) site.

There is good agreement of the solution energy for the octahedral site in the
sd-model, with simulations also showing that the oxygen is unstable in the tetrahedral
site. There are di�erences in the stable site which the oxygen decays to however. In
the DFT simulations of Scotti and Mottura [218], one finds that oxygen initially placed
in a tetrahedral site decays to a hexahedral site, not an octahedral site as found in the
d-model or sd-model. However this instability (or in fact, any instability of a solute
in an interstitial site) has not been noted in the simulations of Nayak et al. [219].
One finds a di�erence in the solution energies of the d-model and sd-model, where
the sd-model predicts less negative solution energies. The di�erence in behaviour is
likely due to the enhanced charge transfer which takes place in the sd-model. In both
models, the electronegative oxygen takes charge from the titanium atoms in range (the
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Ti-O parameter range), however, as Ti-Ti s-electron hoppings are active, there is a
movement of charge from those Ti species which neighbour the depleted Ti species.
The s-electrons move to the depleted Ti to screen the charge depleted species in the
sd-model, whereas this cannot happen in the d-model, due to the lack of s-electron
bond integrals. This reduces the energy from electrostatics between Ti and O in the
sd-model due to screening by Ti s-electrons, causing a less negative solution energy.
This replicates the adsorption energy results seen in section 3.3.3, where the d-model
showed a more negative adsorption energy overall upon insertion of oxygen into the
unrelaxed hcp Ti lattice.

Site Esd≠TB
sol [eV] Ed≠TB

sol [eV] EDFT
sol [eV]

Tetrahedral Unstable (O) Unstable (O) –2.65 [220] –2.62 [219]
Octahedral –2.65 –2.75 –2.72 [220] –2.72 [219]
Hexahedral Unstable (O) Unstable (O) –2.59 [219]

Table 4.2: Hydrogen solution energies in various interstitial sites using the tight-binding
model which was fitted in chapter 3.

Similarly, we find a slightly more negative solution energy for hydrogen when using
the d-model over the sd-model for the same reason as above. Hydrogen is not as
electronegative, nor can it acquire as much charge as oxygen, hence there is only a 0.1
eV di�erence between the sd-model and the d-model. The solution energy here is in
very good agreement with DFT, and it is not expected that volume relaxation would
change the results significantly due to the small strain which hydrogen creates.

4.3.2 Pure screw dislocations in titanium

4.3.2.1 Relaxation

As detailed by the DFT calculations of Tarrat [132, 133], the core structure of screw
dislocations in titanium depends on the position of the elastic centre for the anisotropic
elasticity solutions. In figure 4.5, one finds the relaxed ÈaÍ pure screw dislocation struc-
tures from both the d and sd titanium tight-binding models for all initial positions of
the elastic center (hereon referred to as IPs). The –33 © flb component of the Nye
tensor is shown scaled by the hcp lattice parameter a for ease of comparison with lit-
erature [19]. The Nye tensor was calculated from the atomman python library, where
the Nye tensor –ij describes a distribution of infinitesimal dislocations, of Burgers
vector dbi =

s
A

–ijnjdA, where n is the unit vector normal of the infinitesimal area
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dA which is enclosed by the Burgers circuit being taken [221]. The corresponding
relaxations were also performed in the cluster cell, but the core structures obtained
were found to be similar to those found by quadrupolar array simulations, for both
the d and sd-models.

d-model

sd-model

Fig. 4.5: Pure screw dislocation relaxations in the d and sd titanium models using a
quadrupolar cell. Plots of the –33 component of the Nye tensor are shown to high-
light spreading of the core along the prismatic plane. Di�erential displacement
arrows also shown for the Z displacement component, with di�erential displace-
ments less than 0.1b being omitted for clarity. The dislocation core is enclosed by
a closed triad of arrows, which denotes a total displacement of b. Initial elastic
centre of the dislocation shown by the lime-green cross.

For both tight-binding models, regardless of the initial configuration, one finds a
prismatic spreading, which is more pronounced in the d-model than the sd-model; fur-
thermore, the spreading found is larger than that in DFT results. This is corroborated
by the dissociation distance data found in table 3.5, where the dissociation distance of
the prismatic partials of the sd-model are less than that of the d-model, and both are
larger than those found in DFT. There is no basal plane spreading as has been found
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in previous tight-binding models. This is likely due to the correct ordering of the
stacking fault energies in addition to a likely increased basal core energy, as implied
by the “-surfaces in chapter 3.

Notably, one does not find dissociation on the first-order pyramidal plane to be
the ground state configuration in these tight-binding models, which di�ers from that
of DFT simulations [19, 132, 133, 196]. Hence, one does not predict, in these tight-
binding models, that wavy slip would occur by a locking-unlocking mechanism, as that
suggested by Clouet et al. [19]. Only planar prismatic slip is expected.

Initial position d-TB sd-TB DFT [133]
IP1 0.7328 (P) 0.44231 (P) 0.4396 (fi1)
IP2 0.7417 (P) 0.44231 (P) 0.4484 (fi1)
IP3 0.8111 (P) 0.44221 (P) 0.4419 (P)
IP4 0.7275 (P) 0.44222 (P) 0.4425 (P)
IP5 0.7430 (P) 0.44231 (P) 0.4364 (fi1)
IP6 0.7318 (P) 0.44221 (P) 0.4441 (P)

Table 4.3: Energies of the di�erent dislocation cores in the d and sd-TB models compared to
DFT. All energies in eV/Å. P and fi1 denote the observed dissociation of the core
in the prismatic or fi1 planes respectively. The k-points used for these cells gives
an error for each excess energy of e

TB
excess = ±2 ◊ 1meV/ahcp = ±0.678meVÅ≠1.

The error in the results of Tarrat are e
DFT
excess = ±16.4meVÅ≠1.

The dislocation excess energies, table 4.3, of the sd-model agree remarkably well
in terms of magnitude with the DFT results by Tarrat et al. [133], with only a
maximum di�erence of 6 meVÅ≠1 for the resulting core structure at a given initial
position. The core structures found in the paper of Tarrat et al. do di�er in core
structure however (for example, exhibiting pyramidal dissociations), whereas the core
structures resulting from tight-binding are all prismatically dissociated, hence, there is
little variation in the excess energies with a change of the initial dislocation position.
The d-model screw dislocation core excess energies are ≥ 1.6 times larger than that
of the sd-model, which is a surprisingly large di�erence. The larger excess energy is
due to the additional short-ranged power law contribution in the pair potential in the
d-model. This increases the energy of Ti atoms if found too close to each other, as is
found for the prismatic stacking fault associated with ÈaÍ dislocation dissociation at
[12̄10]/6, as mentioned in the previous chapter.

The prevalence of prismatic dissociation implies that the fi1 stacking fault or the
core energy associated with a ÈaÍ screw fi1 dissociation in these tight-binding models
is too large in energy.
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To try to induce a lower energy pyramidal core, further cells were created for both
the d-model and sd-model in which the initial displacement field was generated from
the expected pyramidal partial dislocations as in equation (3.11), using a method sim-
ilar to Kwasniak and Clouet in their generation of basal ÈaÍ dislocation configurations
from separated partials [131]. The only separation between the partials trialled was
⁄ =

Ò
c2

hcp + a2
hcp/4, which is approximately the dissociated distance of the fi1 partials

in DFT. However, a prismatic dissociation was always preferred. Other separations
could be attempted in future work, but it is likely that this core is high energy and
metastable.
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4.3.2.2 Peierls Stress

ε = 0.0001 ε = 0.0012

d-model

ε = 0.0001 ε = 0.0017

sd-model

Fig. 4.6: Change in core structure of IP5 dislocation with strain in the d and sd titanium
models, with critical Peierls stress. Plots of the –33 component of the Nye tensor
are shown to highlight spreading of the core along with the di�erential displace-
ment in Z, with di�erential displacements less than 0.1b being omitted for clarity.
Initial elastic centre of the dislocation shown by the lime-green cross.

The core structures found upon straining to cause prismatic glide are found in figure
4.6. Using an increment in the Áxz strain of 1◊10≠4Crot, where Crot is the transformed
elastic constant, with a value of Cd≠rot

44 = 38.4749 GPa, we find in the d-model that
the dislocation glides along the prismatic plane at ‡dc

xz
= 0.0012Cd≠rot

44 , giving a Peierls
stress of ‡dc

xz
= 2C44Áxz = 92.3 MPa. For the sd-model one found the stress increment

to be ‡sdc
xz

= 0.0017Csd≠rot
44 = 0.0017 ◊ 48.86 GPa = 166.124 MPa. These strains are
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smaller than those found by the MEAM potential of Trinkle et al. [191, 222], where
a strain of ÁMEAMc

xz
= 0.005 =∆ ‡MEAMc

xz
= 580 MPa, resulting in the tight-binding

models being ≥ 3 to 6 times easier to enact glide in than the MEAM. The tight-binding
Peierls stresses do however agree with experimental results in high-purity titanium.
Biget and Saada [22] find at 4K, a CRSS of ≥ 100 MPa, which agrees especially well
with the d-model value of 92.3 MPa. This value is lower than other flow stresses
quoted in other studies due to the large e�ect of impurities, as noted by the authors.

Trinkle et al. [191] find that upon action of strain, basal or prismatic, on pyra-
midally dissociated cores, a transformation to the prismatic core always occurs. The
core which undergoes pyramidal dissociation is metastable in the MEAM, with the
prismatic core being the ground state. We find in tight-binding that there are no
metastable cores upon relaxation of the anisotropic elasticity displacements, just pris-
matic dissociation, but the dislocation core structure remains in a prismatic configu-
ration under strain, in agreement with this empirical potential.
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4.3.3 Screw dislocation-oxygen interactions

Initial

Initial

Initial

Fig. 4.7: Oxygen-screw dislocation relaxations in the sd titanium model using a quadrupo-
lar cell. Initial position of oxygen given by orange, unfilled triangle, with final
position given by filled green triangle. Initial elastic centre shown by lime-green
cross for reference. Plots of the –33 component of the Nye tensor are shown of
the middle layer which contains oxygen. Di�erential displacements less than 0.1b

were omitted for clarity.

108



Modelling of defects in titanium

In figure 4.7, we see the screw dislocation core structure changes upon insertion of
oxygen into di�erent sites around the core. There are di�erences in some core config-
urations between tight-binding and DFT. In tight-binding, if oxygen is placed in an
adjacent prismatic plane, and is placed further than the extent of the partial in the c

direction, one finds that the repulsive interaction causes the dislocation to move along
the prismatic plane away from the oxygen (figure 4.7: 1,10). When placed closer to
the dislocation, the screw core moves a smaller distance along the prismatic plane,
with a redistribution of the Burgers vector density towards the oxygen (figure 4.7:
2,9). When oxygen is placed in the prismatic plane upon which the dislocation has
dissociated, if the oxygen is in the vicinity of the dislocation core, oxygen prefers to
be in the hexahedral site which is created by the prismatic stacking fault (figure 4.7:
3–6). As the oxygen is placed at further distances from the dislocation elastic centre
along the prismatic plane, there is a preference for the screw dislocation to move to
the oxygen, which again, decays into the newly created hexahedral site created by the
prismatic stacking fault (figure 4.7: 7). If oxygen is in an octahedral site on the basal
plane which intersects with the elastic centre of the dislocation, the core stays in the
same position, if the oxygen is in the closest prismatic plane (figure 4.7: 11). When
placed in the second closest prismatic plane, on the same basal plane intersecting the
elastic centre, one finds that the core reconfigures into a mixed prismatic-pyramidal
core, where the prismatic partial is on same plane as the oxygen (figure 4.7: 12).

We find in tight-binding there is a tendency for oxygen to go into the hexahedral
site created by the prismatic stacking fault, despite the instability in the usual lattice
of the hexahedral site, as seen in table 4.1. This is due to the increased volume
available in the site, as mentioned in work by Yu [26]. When this occurs there is a
slightly enhanced dissociation of the partial dislocations on the glide plane due to the
repulsive interaction with oxygen. This was also corroborated by NEB stacking fault
calculations by Kwasniak [168].

Tight-binding predicts that the dislocation will locally create kinks on the prismatic
glide plane, either by the repulsive e�ect of oxygen on the dislocation, figure 4.7:
1,2,9,10, or by the lowest energy configuration being that of the oxygen within the site
created by the prismatic stacking fault, as found in the behaviour in figure 4.7: 3–6.
Jogs on the fi1 plane can be formed as seen in figure 4.7: 12.

In figure 4.7: 12, it is interesting that the dislocation undergoes fi1 cross-slip to-
wards the oxygen, allowing Burgers vector density onto the fi1 plane and the adjacent
prismatic plane which contains the oxygen. When the oxygen is closer to the dis-
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location, on the same basal plane, figure 4.7: 8, we do not see this behaviour: the
dislocation stays where it is due to the equally repulsive interaction oxygen has with
the partials on either side of it. This behaviour could be due to the reduction of
the stable stacking fault energy on the fi1 plane with oxygen content, as observed
by Kwasniak in DFT NEB calculations [168]. In this work, oxygen in the first and
second nearest glide planes caused reductions in the stable stacking fault energy, with
oxygen two planes away causing the greatest reduction to the stable fi1 fault energy.
The stable prismatic stacking fault however, increased for all sites, albeit slight. Even
though the stable stacking fault on the fi1 plane in the sd-model was higher than that
found in DFT works, perhaps with oxygen there is an appreciable reduction, which
allows for a lowering of the energy “-surface energy penalty for dissociation on the fi1

plane compared to the prismatic plane.
The behaviour shown in figure 4.7: 12, indicates a mechanism which could tie

together apparently conflicting experimental observations. The first is the suppression
of prismatic slip, with observation of increased fi1 slip with oxygen content [15, 33],
as seen by the fi1 cross-slip behaviour. The second, is that of increased slip planarity
(increased amounts of prismatic slip), while also observing jogged screw dislocations
[24, 28], due to the repelled partial dislocation evident on the adjacent prismatic
plane, promoting prismatic glide of the cross-slipped dislocation, with the formation
of a fi1 jog. The experimental observations all depend on the strain-rate, where lower
strain rates find wavy slip (unstable prismatic glide), and higher strain rates find
prismatic/planar slip. Intuitively, one can see there would be a strain-rate dependence
on the mechanism exhibited in figure 4.7: 12, which is also shown schematically in
figure 4.8: increased strain-rates imply large dislocation velocities, which result in
a propensity for dislocations to continue accommodating plasticity along their usual
prismatic path. The reduction in the stacking fault energy on the fi1 plane from oxygen
causes cross slip, and the dislocation cross-slips again to continue on the prismatic
plane, promoting slip planarity. At low strain-rates, the dislocation cross-slips onto the
fi1 plane, but slip on the fi1 plane path can be continued. At low temperature, planar
slip is promoted as the oxygen cannot migrate, allowing for a continued repulsive
interaction of oxygen with the dislocation when on the same prismatic plane. Whereas
at higher temperatures, the oxygen is able to migrate from the disfavoured site once
cross-slip has occurred, which would allow for wavy slip. This is consistent with many
experimental observations and the strain-rate and temperature dependence of these
behaviours [15, 24, 28, 32].
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Fig. 4.8: Mechanism shown by tight-binding which could explain slip planarity in titanium
with oxygen content. Dislocation shown by §, with direction of glide given by
dashed arrows. a) The dislocations interact with oxygen, which allows for favoura-
bility of dislocation cross-slip on the fi1 plane due to a reduction in the stacking
fault energy with oxygen content, as seen by Kwasniak [168]. b) The dislocation
can continue its path on the prismatic plane.

The mechanism just described seems to improve upon the explanation provided by
Chong et al. [28]: the interstitial shu�ing mechanism (ISM). The ISM only accounts
for either slip planarity or jog formation separately and it cannot explain the increase in
the number and size of jogged screw dislocations with temperature when slip planarity
has been exhibited, as seen in the results of Williams [24]: there is no cross-slip
mechanism which can occur in conjunction with slip planarity in the ISM model.
However, the mechanism just described has only been observed in one configuration
seen here, and it remains to be validated by other methods: no DFT calculations have
been performed with oxygen interacting with a screw dislocation in this particular
site. Perhaps the described mechanism also generalises to DFT work seen by others.
Indeed, there is a reduction in stable stacking fault energy on the basal plane with
oxygen content as in the results of Kwasniak [168], which suggest a similar mechanism
could occur with basal jogs. Also, the sd-model exhibits a large positive “fi1–“P energy
di�erence, whereas DFT has a negative di�erence, suggesting that such a mechanism
would be more likely to occur in DFT, as fi1 dissociation would become even more
favourable than prismatic.

The actual core structure of these dislocations upon interaction with oxygen is
similar to what is found in DFT, in some cases. In the vasp calculations of Chaari
et al. [75], the ÈaÍ screw core structure either becomes compact, upon a repulsive
interaction with oxygen, creating basal or fi1 jogs, or there is a similar or enhanced
spreading of the core along the original glide plane on which the ÈaÍ screw core was
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originally dissociated. The DFT work here only sampled two octahedral sites and a
hexahedral site for each metastable core structure. It remains to be seen if similar
behaviour can be replicated in DFT for the other sites sampled.

The interaction energies of oxygen from tight-binding ≥ 600 to 900 meV are higher
than those found in DFT ≥ ≠80 to 600 meV. No oxygen-dislocation interactions were
slightly attractive in tight-binding, but, these attractive interactions in DFT were
attributed to a transformation of the metastable core structure to a lower energy
core, confirming that oxygen-screw dislocation interactions are repulsive in all cases.
The charges of species are consistent with that of solution energies, hence the larger
repulsion can be attributed to the Ti-O pair potential, and how it is rather strong.
Therefore, in a deformed lattice, there are larger energetic contributions compared
to DFT. This is commensurate with results which will be presented later for the
volume expansion of the titanium lattice with an oxygen interstitial, showing greater
repulsion of Ti species in tight-binding compared to that of DFT, thereby increasing
the magnitude of measured elastic dipole tensor components.

The minimum energy configuration of oxygen being in a hexahedral site is consis-
tent with the theory of Chong et al., that of the interstitial shu�ing mechanism [28].
In this mechanism, dislocations gliding on the prismatic plane shu�e oxygen atoms
into a hexahedral site. This allows for the glide of dislocations past oxygen at a higher
strain rate due to the continued passage of dislocations past the shu�ed oxygen. It
is likely that the Peierls potential of dislocation glide with oxygen in this site is high,
due to the repulsion of both partials from the oxygen. This could also be an e�ect
which increases the yield strength: a pinning e�ect by hexahedral oxygen where there
is a spring-like repulsive interaction with the partials, inhibiting glide.

4.3.4 Edge dislocation-oxygen interactions in anisotropic elas-
ticity

The solution energies, allowing for the relaxation of cell volume, and the corresponding
change in volume compared to that of the perfect cell, is shown in table 4.4.

The dipole tensor components extracted from the di�erent cell sizes are shown in
table 4.4. The data for the changes in volume for the DFT cells were taken from
the paper of Aksyonov et al. [223] from the changes in the lattice vectors in the
supplementary material and calculated in the same way as those for the tight-binding
volumes. Note that the percentage change in each lattice vector was only quoted to
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Size Esol [eV] P oct.
11 [eV] P oct.

33 [eV] �V [Å3]
3 ◊ 3 ◊ 2 sd-TB –7.45 7.03 5.46 9.4
4 ◊ 4 ◊ 3 sd-TB –7.40 6.75 5.58 10.3
3 ◊ 3 ◊ 2 DFT [223] –5.61 3.81 4.47 6.7
4 ◊ 4 ◊ 3 DFT [223] –5.59 4.67 4.49 7.0

Table 4.4: Solution energies of octahedral oxygen allowing for volume optimisation com-
pared to DFT with calculation of dipole tensors. Volume di�erence of the cell
with the octahedral site in comparison to that of the perfect lattice.

one decimal place in the aforementioned paper, which results in volume di�erences
which are slightly larger (by ≥ 2Å3) than those that are found in the paper itself,
resulting in an error of the DFT dipole tensor matrix elements of ≥ 30%.

The volumes increase with cell size as one expects. The dipole tensor components
calculated are reasonably similar with cell size within tight-binding, but they do di�er
by a greater amount within DFT, due to the imprecision with the quoted changes in
lattice vectors used, as mentioned above. One finds that there is a larger change in
the volume of the cell upon relaxation compared to that of DFT. This suggests that
the Ti-O repulsion from the pair potential is somewhat stronger than the repulsion
from DFT.

In the coordinate system of a basal edge dislocation, one obtains the dipole tensor
from the 4 ◊ 4 ◊ 3 titanium cells as

P oct. B
sd-TB =

S

WWWU

6.75 0 0
0 5.58 0
0 0 6.75

T

XXXV , (4.19)

and

P oct. B
DFT =

S

WWWU

4.49 0 0
0 4.67 0
0 0 4.49

T

XXXV , (4.20)

from sd-TB and DFT respectively.
In the coordinate system of a first-order pyramidal edge dislocation, one obtains

the dipole tensor from the 4 ◊ 4 ◊ 3 titanium cells as

P oct. fi1
sd-TB =

S

WWWU

6.75 0 0
0 6.48 0.49
0 0.49 5.45

T

XXXV , (4.21)
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and

P oct. fi1
DFT =

S

WWWU

4.49 0 0
0 4.63 0.07
0 0.07 4.54

T

XXXV , (4.22)

from sd-TB and DFT respectively.
The stress tensor and corresponding binding of edge dislocations is found in figure

4.9. The radius of the core region was taken to be the the half-width rc = ’edge =
ddiss/2(1 ≠ ‹), as in Argon [11], where ‹ = 0.315 Poisson’s ratio calculated from
the hexagonal elastic constants in the sd-TB model, which is similar to the value of
‹ = 0.31 pure titanium from the empirical elastic constants. The relevant dissociation
distance was taken from table 3.5. These core radii are all above the usual method in
the literature of assuming rc = b.

The elastic constants were not determined for the reference data of Aksyonov et
al. [223], so the same elastic constants of tight-binding were used, as they are close to
the experimental values, and result in a more direct comparison of the dipole tensor
components and the binding energies which result.
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Fig. 4.9: Stress tensors and the resulting binding energies of oxygen to B {0001} ÈaÍ and
fi1 {101̄1} ÈaÍ edge dislocations. Basal stress tensor components found on top left
with first-order pyramidal plane stress tensor components on the right, both from
tight-binding elastic constants. Middle and bottom: binding energies resulting
from calculated elastic dipole tensors of tight-binding (left) in comparison to that
of DFT (right) for the basal (middle) and fi1 (bottom) planes. Contours range
from -0.4 eV to 0.4 eV in increments of 0.05 eV. The outermost contours of the
plot are -0.05 eV and +0.05 eV for the dashed and solid contours respectively.
Core radii determined from explicit calculation from the energy coe�cient matrix
in the dislocation reference frame.
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One finds in figure 4.9, that for a given distance from the core, oxygen can bind
more strongly to basal edge dislocations rather than fi1 edge dislocations, on the
tension side. The change in the morphology of the binding energy contours can be
seen from the change in the stress tensors, where the ‡33 component changes from a
bow-like shape in the basal edge dislocation, to a leminscate in the fi1 edge dislocation.

The maximum binding energy which can be determined, and deemed to be accurate—
the binding energy just outside of the core region—for DFT is 0.2 eV and 0.3 eV for
the fi1 and basal edge dislocations respectively. From tight-binding, one finds the
maximum binding energies just outside of the core region are 0.3 eV and 0.25 eV for
the fi1 and basal edge dislocations respectively.

To make a connection with jogs, one must first address the assumption here: that
jogs can be well-described by straight edge dislocations. In reality, there is a width to
the jogs. An estimation of jog width is given in the appendix A. It was found, from
anisotropic elasticity and stacking fault energies, that the jogs have widths around
w ¥ 3b. These are narrow compared to kinks on screw dislocations in iron, which are
≥ 10b. Hence, one can say the approximation of the binding energy of oxygen to the
jog is well represented by a straight dislocation, especially if the oxygen has migrated
half the length of the kink ≥ 1.5b, which represents a few di�usion events, which could
be promoted by the reduction of interstitial di�usion barriers around dislocation cores.

Assuming a jog width w ¥ 3b, and that the oxygen di�uses to the next octahedral
site—by thermal activation of either the octahedral æ octahedral, or the lower energy
octahedral æ crowdion æ hexahedral æ octahedral transitions—the vectorial distance
traversed is ahcp = b or chcp/2 ¥ 0.8b. Therefore, only two octahedral æ octahedral
transitions are necessary to reach the middle of jog, where the approximation of a
straight dislocation becomes most accurate.

4.4 Discussion

4.4.1 General comments

Of the tight-binding models considered, one sees that the d-model, despite the good
results of stacking fault energies, does not agree with DFT as well as the sd-model, of
which exhibits a dissociation of the prismatic screw dislocation more comparable to
DFT, in addition to very good agreement of the excess core energies for prismatically
spread cores. However the Peierls stress of the d-model agrees remarkably well with
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experiment [16, 22], especially compared to MEAM calculations of Trinkle et al. [191].
Both tight-binding models thankfully do not fall prey to a basal ground-state core
structure, as has befallen past tight-binding models, resulting in the first modern tight-
binding models which have a core structure which is more representative of current
screw dislocation theory in titanium, in addition to the first models which produce
realistic CRSS values compared to experiment.

The sd-model has solution energies of oxygen and hydrogen which are more in
agreement with DFT than the d-model. As such, one hoped good agreement would be
found for the repulsive energies between oxygen and screw dislocations. The repulsive
interaction was overall greater using the tight-binding models parameterised here due
to the strong Ti-O pair potential. Another e�ect of this increased repulsion was found
in the larger volumes upon relaxation of oxygen in an octahedral site in titanium,
which caused dipole tensor components to be larger in magnitude, resulting in the
binding energies of oxygen to edge dislocations to be slightly higher than DFT.

The larger Ti-O repulsion, in conjunction with only one screw core structure, which
had a larger dissociation distance than that of DFT, caused notable di�erences in
screw dislocation-oxygen interaction, but there was reproduction of most mechanisms
found in DFT, that of core compaction/elongation with jog formation, along with new
mechanisms. Only slightly compacted cores were found due to the preference of a core
structure spreading on the prismatic plane. This led to no basal jogs being formed,
only fi1 jogs. New phenomena in support of the hypothesis of the interstitial shu�ing
mechanism, by Chong et al. was shown here, where lowest energy configuration is for
oxygen to migrate to a hexahedral site in the site created by the prismatic stacking
fault [28], which is in agreement with the NEB calculations of stacking fault energies
on the prismatic plane with oxygen content, where oxygen goes to this hexahedral site
[168].

With the new sites sampled around the dislocation core, one finds phenomena
suggesting that the jerky flow of dislocations in titanium with oxygen content may be
due to the local formation of kinks on the dislocation glide plane, in the direction which
opposes glide, in addition to the formation of jogs, due to the repulsive interaction
with oxygen. Kinks would inhibit dislocation motion due to an enhancement of the
probability of stable kink-pair formation in opposition to the direction of dislocation
glide. Furthermore, the new mechanism of jog formation due to a more preferable
pyramidal stacking fault energy from oxygen interaction hints at another potential
mechanism to describe jerky flow, which also explains the increased frequency and
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number of jogged screw dislocations with temperature and oxygen content, as observed
by Williams et al. [24], which the ISM cannot account for.

The results of oxygen binding to edge segments is relevant to the motion and
formation of superjogs. The binding energy of oxygen to these edge segments can be
used to estimate jog glide velocity, upon the estimation of the dislocation line-tension
[203]. This work can also be important in the estimation of creep e�ects by the climb
of these jogs, which may also drag oxygen.

4.4.2 Locking-unlocking vs fi1 metastability

The lack of metastable core structures found in the tight-binding models is seem-
ingly due to a high fi1 core energy which is unstable for the one dissociation distance
trialled. This may a�ect the prediction of core transformations seen in the screw
dislocation-oxygen interactions. But, due to the error of energies associated with the
core structures from DFT, one cannot totally refute the possibility that the prismatic
core structure could be the ground-state. Trinkle et al. [191] claimed that pyramidally
dissociated cores found from DFT and the MEAM are artefacts of relaxation from the
initial anisotropic elasticity solution displacements, due to the fact that under strain
there is a transformation of the pyramidal core, to that of a prismatic one. However,
metastability of the pyramidal core has only been found in MEAM calculations, not
in DFT; and rather conveniently, the dislocation excess energy from Trinkle et al.’s
DFT calculations were not presented in their work, despite having performed similar
DFT relaxations and core structures to Tarrat, of whom found the lowest energy core
structure with a pyramidal dissociation [132, 133]. They also misquote which core
structure has the lowest excess energy in the Tarrat et al. paper, which is also in con-
flict with their fi1 screw core metastability hypothesis. Within tight-binding, the fi1

screw core is metastable, as evidenced with its observation due to oxygen interaction,
in agreement with the MEAM calculations.

If one were to take this hypothesis further—that the prismatic core is stable, and
the pyramidal is metastable—one must re-examine the origin of jerky glide in titanium
[12, 15, 17, 18, 24], which is usually attributed to a locking-unlocking mechanism
(figure 1.2, right) where the pyramidal core is sessile but the ground-state, and the
prismatic core is glissile but dependent on a thermally-activated core transformation
[19]. We will now examine experimental results in the light of this hypothesis and
compare to the current consensus of locking-unlocking, to determine whether this
paradigm can satisfactorily explain the observed phenomena in titanium.
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The higher propensity of planar slip at low temperature is consistent with this
hypothesis, with higher temperatures giving rise to wavy slip [24, 28], which suggests
a thermally activated transition from prismatic to the fi1 core, causing cross-slip. The
higher planarity of slip with oxygen content in these studies can be explained away if
the interstitial shu�ing mechanism is indeed active in conjunction with the cross-slip
phenomena, both with oxygen on the glide plane and the new observation of cross-slip
by oxygen on further glide planes. But in high-purity titanium (≥ 50ppm Oú), in
situ straining experiments by Farenc [19], show jerky motion and cross-slip at 150K.
If the prismatic ground-state core hypothesis is true, jerky motion should not occur
in high-purity titanium. It is likely these experiments are at a low strain-rate, as in
other in-situ experiments [203], which show consistency with the locking-unlocking
mechanism.

There are also problems with the assumption of a prismatic ground-state struc-
ture which is also glissile, which arises when considering the stress dependence of the
activation area in titanium. In high purity, single crystals of titanium, many studies
[17, 18, 20, 22] find a ‡≠2 dependence of the activation area, akin to the Friedel cross-
slip mechanism arising from dislocation bowing [23]. This implies a sessile ground-state
core configuration, in which the glissile dislocation segments can bow due to pinning
of segments in their sessile ground-state, in line with the locking-unlocking hypothesis.

It was stated that the jump distances decreased with increasing temperature (rang-
ing from 150-473K), which is consistent with locking-unlocking theory [16, 17]. How-
ever, the decrease in jump distance could be explained by the increased likelihood
of promotion of the glissile prismatic core to a pyramidal one. Also, in the material
studied, there was a very high e�ective oxygen content (≥ 3000ppm Oú), as such, the
interstitial shu�ing mechanism of oxygen jumping from a metastable hexahedral site
to that of an octahedral one at higher temperatures could also impede glide, explaining
the reduced jump distance.

The slip of zirconium, another hcp transition metal of d2 valence, exhibits glide
which has been said to be jerky at low temperature (24K) [16], and smooth in the
range of 95 to 300 K [203]. The observation of smooth glide has been attributed
to a ground-state prismatic core structure [19], unlike the metastable prismatic core
structure for titanium, which exhibits jerky flow in the same study. There was a lack
of any cross-slip of Zr seen at the range of temperatures tested, whereas for titanium,
there was cross-slip between prismatic and pyramidal planes. These results suggest
that zirconium may actually have a locking-unlocking mechanism, but there exists a
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transition temperature, between 24–100K, in which dislocation motion becomes more
smooth due to consistent activation of prismatic glide. This does not coincide however
with the temperatures at which discontinuities are found in activation areas, where
one expects a transition to a smooth kink-pair controlled glide mechanism in the
higher temperature range above 300K [16]. The jerky glide seen in zirconium at low
temperature suggests the same locking-unlocking mechanism is apparent in titanium,
just with a higher transition temperature. These results put into question the ab-
inito core structures found in the aforementioned study, and their predictive power,
given that jerky flow, one of the observations which underpins the locking-unlocking
hypothesis, was exhibited in zirconium at low temperature, despite the calculation of
a prismatic ground-state at 0K from DFT, which has been stated in opposition to this
hypothesis [19].

The discussion here suggests that a locking-unlocking mechanism—where a ses-
sile pyramidal core is the ground-state, and a glissile prismatic core is metastable—
describes the phenomena observed in titanium su�ciently well.

The transition between wavy and planar slip with oxygen content should be investi-
gated further, for validation/exploration of potential mechanisms for slip planarity, as
detailed earlier. The new mechanism proposed to explain slip planarity works well in
conjunction with a locking-unlocking mechanism. Together, both can describe many
observed phenomena in titanium, from jerky flow to increased slip planarity in tandem
with increased frequency of jog formation at higher temperatures. Finite temperature
atomistic simulations would be preferable to investigate this, but, the current state-
of-the-art models cannot capture the subtleties of structures necessary, nor can many
a�ord the complications which come with the inclusion of oxygen interactions.

4.4.3 Summary of solute-hardening by oxygen content in ti-
tanium

In the context of the results in this chapter and the current literature, one can dis-
cuss how oxygen causes hardening in titanium with oxygen content as follows. Screw
dislocations control plasticity due to their low mobility compared to that of edge dis-
locations [12, 24, 183]. As a screw dislocation glides on the prismatic plane, there
are multiple di�erent modifications to the screw core structure which inhibit glide due
to oxygen interactions. Oxygen atoms which are not found in the glide plane have a
repulsive interaction with the gliding screw, which results in the formation of kinks
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which oppose the direction of glide, inhibiting dislocation motion. Overcoming this
repulsion, at low strain rate/high temperature the dislocation can get closer to oxygen,
where the core, instead of being dissociated on the prismatic plane, can become com-
pact, forming basal or fi1 jogs [26, 75], which could be promoted due to the reduction
of the stable stacking fault energies on the basal and fi1 planes with oxygen content
[168]. These jogs inhibit glide due to only responding to the action of a di�erent shear
stress component, causing pinning. This pinning causes bowing of the dislocation line,
on continued action of shear stress. These jogs—which are likely small due to the large
Peierls stress on the basal/fi1 planes—could annihilate due to the unequal line-tension
components associated with bowing [199], but they are stabilised and pinned them-
selves by the binding of oxygen. The migration of oxygen could be incentivised by the
reduction of interstitial di�usion barriers from the strain fields around dislocations, as
evidenced in other systems. The stabilisation of the jog allows for superjogs to form
due to the enhanced probability of further dislocation cross-slip. These superjogs can
undergo loop expansion, causing dislocation multiplication and debris.

At a higher strain rate/low temperature, there are a two possible mechanisms.
The first, as per the ISM, is that dislocations do not locally cross-slip, staying their
course on the prismatic plane. This causes the oxygen to shu�e into the newly cre-
ated hexahedral site within the prismatic stacking fault, as evidenced in the above
dislocation calculations. For the dislocation to pass the oxygen, the repulsive action
of oxygen with the dislocation partials must be overcome. This repulsion is increased
due to the larger stable stacking fault of energy on the prismatic plane with oxygen
content in the dislocation glide plane. With a high enough stress however, the dis-
location can pass the oxygen, resulting in a hexahedral oxygen, which resides in the
basal plane. This hexahedral oxygen stays in the site at low temperature after passage
of the dislocation, as evidenced in lightly strained titanium [26], thus allowing for a
more planar slip of screw dislocations past the oxygen on the prismatic plane, rather
than cross-slipping onto a fi1 or basal plane. At higher temperature, the oxygen can
hop out of the hexahedral site, which causes dislocation cross-slip/wavy slip due to
interaction, and the mechanism in the previous paragraph applies.

The second regime which could act at a higher strain rate/low temperature, sug-
gested in this thesis, is that jogs are formed, but due to oxygen-dislocation interactions
where oxygen is not in the same plane as the screw dislocation, which di�ers from the
low strain-rate case explained previously. There is a repulsive interaction of oxygen
with the dislocation which can promote prismatic slip at higher strain rates. This
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explains the increased frequency and size of jogs formed when planar slip occurs at
high oxygen contents [24] and it additionally describes the instability of prismatic
slip at low strain rates [15]. Furthermore, it describes the temperature dependence
of wavy and planar slip, where oxygen jumps from the repulsive site upon the occur-
rence of cross-slip at high temperature, promoting wavy slip, and planar slip occurs at
low temperatures as the oxygen cannot migrate, continuing its repulsive e�ect on the
screw dislocation, promoting prismatic slip. All of this is consistent, and is an even
more attractive proposal, with the locking-unlocking mechanism, due to the stability
of fi1 core, which explains the ‡≠2 dependence of the activation area. This mechanism
seems more likely to occur in DFT work due to the lower energy of the fi1 fault relative
to the stable prismatic fault energy.

4.5 Conclusion
Performing calculations with the simple tight-binding models parameterised in the
previous chapter, one finds reasonable agreement in solution energies, in addition to
a prismatically dissociated screw dislocation core structure. This is in agreement
with experimental observations of dislocation glide and metastable DFT screw dislo-
cation core structures, resulting in the first modern tight-binding model for titanium
which reproduces this behaviour. The parameterisation of the tight-binding models
has been successful, with demonstration that the model is general enough to handle
defects, while not being overly complex, allowing for good scalability, as shown in the
simulation of dislocations with ≥ 1000 atoms.

Metastable/pyramidal core structures were not found upon relaxation by the initial
anisotropic elasticity displacements, which di�ers from DFT behaviour, but the error
associated with these energies is appreciable, as such, one cannot discount a ground-
state prismatic core structure, despite the attractiveness of the locking-unlocking
mechanism which describes many phenomena exhibited in titanium, such as the ‡≠2

dependence of activation area, and decreasing dislocation jump distance with temper-
ature. Peierls stresses from tight-binding agree with measurements of the CRSS in
high-purity titanium, unlike empirical potentials.

Oxygen-screw dislocation interactions using the sd-model reproduce phenomena
and hardening mechanisms found from ab-inito methods, such as the formation of
jogs on the fi1 plane from the reduction of the respective stable stacking fault energy
with oxygen content, despite larger repulsive interactions arising from the strong Ti-O

122



Modelling of defects in titanium

pair potential. New hardening phenomena was exhibited in tight-binding, showing a
proclivity for kinks to form on the glide plane, in opposition to the glide direction,
due to the repulsive e�ect of oxygen, which could explain the jerky glide of screw
dislocations. In addition, a new explanation of the strain-rate dependence of slip
planarity with oxygen content was given due to the observation of new phenomena in
tight-binding: dislocation cross-slip induced by oxygen which is not in the glide plane
of the dislocation. This was attributed to the favourability of the fi1 stacking fault
with oxygen content, which is corroborated by DFT stacking fault energy calculations.
This rectifies the lack of explanation for jogged screw dislocations with increased slip
planarity in the ISM model.

Analysis of the binding energy of oxygen to edge segments, by a dipole tensor
analysis, shows that oxygen binds more strongly to basal jogs rather than fi1 jogs,
with calculation of narrow jog widths showing that the approximation of a straight
edge dislocation is valid. This binding inhibits jog-dipole annihilation by pinning,
resulting in a higher probability of cross-slip and superjog formation, explaining loop
expansion and dipolar debris. These binding energies are beneficial for future analyses
into dislocation creep, which is thought to be controlled by jogs on screw dislocations
in titanium. Tight-binding and DFT oxygen-edge dislocation binding energies were in
good agreement, but a larger volume expansion was found in tight-binding from the
strong Ti-O pair potential.
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Chapter 5

Dislocation-carbon interactions in
Fe-C

5.1 Introduction
The martensitic microstructure of bearing steels can undergo decay. During operation,
cyclic loading can exceed a given contact stress, which causes an accumulation of
plasticity, signalling the onset of rolling contact fatigue (RCF). This increases the risk
of failure from subsurface crack initiation. The microstructural decay corresponds to
the observation of Dark Etching Regions (DERs) as seen in optical microscopy, where
the darkness of these regions is due to the higher reactivity of DER phases to the
etchant [34]. See figure 5.1.

Decay of the martensitic microstructure is complex, with the observation of many
di�erent phenomena. Martensite transforms to ferrite microbands as a result of strain
localisation [35–39, 50, 224–226]. Residual carbides, untouched at the start of DER
formation, gradually dissolve within ferrite and martensite [38, 39, 227]. Further RCF
progression leads to the formation of low and high angle ferrite features, White Etching
Bands (WEBs), composed of nanocrystalline [224, 227, 228] and elongated ferrite
[50]. Lenticular carbides precipitate at the boundaries of these ferrite bands [39, 227].
Thickening of these carbides occurs during DER development and is correlated with
WEB growth [35, 51–53]. Reductions of dislocation density in nanocrystalline (heavily
deformed) ferrite have been observed in the later stages of DER formation [34, 229].

Carbon migration is thought to be the mechanism by which this degradation oc-
curs, but it is not definitively known how or where carbon migrates with the onset of
DER formation. The key questions are: where does excess carbon from the marten-
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Fig. 5.1: Diagram of DER location within a bearing and its characteristics, taken from [51].
(a) Axial and circumferential sections of a bearing inner ring. (b) Circumferential
section of a bearing inner ring under an optical microscope, where ferrite bands
(white etching bands) are formed in the subsurface. (c) Diagram showing the
structure of a WEB consisting of a ferrite band and a LC adjacent to it. One can
see the DER region is composed of regions of ferrite interspersed in the parent
martensite with lenticular carbides bordering the ferrite bands.

sitic matrix find itself when the structure decays to low solubility (0.02 wt%) ferrite?
and how is the carbon transported, given its low di�usivity in martensite/DER phases
[230]?

Fu et al. propose that carbon atoms inside the martensite would segregate to
pre-existing/residual carbides, increasing their size [51]. This theory was successfully
applied to the growth of lenticular carbides [35], however, problems arise with the ap-
plication to temper carbide growth: if carbides were to form in martensite, they should
follow the Bagaryatskii/Isaichev orientation relationship, but observations suggest a
lack of any orientation relationship [231]. Temper carbides residing within DERs have
irregular shapes/di�use boundaries, which are seemingly due to the incomplete disso-
lution of temper carbides, which is at odds with the theory of Fu et al..

A plausible mechanism for carbon migration is that it is driven by dislocation
glide, which is as follows [35, 39, 51–53, 225]. Due to the high dislocation density
exhibited in martensite, carbon segregates to dislocations in Cottrell atmospheres,
causing pinning. Strain generated by cyclic stresses allow dislocations to escape their
carbon rich environment. The free dislocations re-attract carbon, allowing the Cottrell
atmospheres to reform, subsequently re-pinning the dislocations, creating a net carbon
flux. This mechanism allows for the movement of carbon during the martensite-ferrite
transition, while also explaining how excess carbon can move from the ferrite phases to
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lenticular carbides at the boundaries, describing the process behind both WEB growth
and carbide thickening. Moreover, it explains the dissolution of residual carbides, both
in ferrite WEBs and martensite, due to dislocation rearrangement and pile ups at the
carbide interface drawing carbon atoms out, due to a more favourable binding to
dislocations. However, as to how this process occurs on the atomistic scale, or if it is
indeed feasible, is unknown.

Experimentally probing dislocation-assisted carbon migration has proven di�-
cult and inconclusive. As such, theoretical work needs to be done to understand
dislocation-carbon interactions; more specifically: how could carbon move with dislo-
cations within the temperature and stress regimes experienced during operation and
where is carbon transported to and what are the resultant dislocation networks.

To shed light on this mechanism, a multi-scale modelling approach can be used.
Atomistics can provide information of the 2d Peierls energy landscape which dislo-
cations are subject to in iron; and how this landscape is modified by the binding of
carbon to dislocations. The Peierls landscape and binding energy data can be used in
a line-tension model of a dislocation to determine the kink-pair formation enthalpies
of dislocations as a function of carbon content and stress. These enthalpies furnish
us with the average velocities of dislocations undergoing glide by thermally activated
kink-pair nucleation at di�erent carbon concentrations. By the elucidation of carbon
migration barriers around dislocations using atomistics, we can directly compare the
average carbon velocities in the vicinity of dislocations, and determine whether it is
feasible that carbon can keep up with dislocations undergoing thermally activated
glide. Finally, one can use a kinetic Monte Carlo (kMC) model of dislocation glide
by thermally activated kink-pair nucleation, in an environment of carbon, which can
di�use using the barriers found by atomistics. From this last stage of coarse-graining,
one can determine in which regimes of temperature, stress and carbon concentration,
dislocation-assisted carbon migration becomes a feasible mechanism behind DER for-
mation. For this we need to predict dislocation velocity, dislocation configurations,
and where carbon moves with dislocation glide.

In this chapter, the focus is on the atomistic and line-tension modelling portions
of this project, all derived from the Fe-C magnetic tight-binding model of Paxton and
Elsässer [206], to understand dislocation-carbon interactions in ferrite (bcc iron) in
detail. This pushes the tight-binding technique to its limits in terms of scale and
feasible computation time within a direct-diagonalisation framework. For example,
each di�usion barrier calculation, as shown section 5.3.7, took 90,000+ core hours,
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resulting in figure 5.22 being worth well over 1,000,000+ core hours, not accounting
for the time taken to obtain the cells between which di�usion barriers were sought.

The aforementioned calculations are simply not feasible for calculation with DFT,
due to the large prefactor associated with the O(N3) scaling compared to tight-
binding. It is only due to the preferential scaling of tight-binding, and the accuracy
of the parameterisation—which satisfactorily replicates DFT results, unlike empirical
potentials—which allows for the opportunity to obtain these barriers.

5.2 Computational Method
The tight-binding model of Paxton and Elsässer [206] has been shown to describe
the binding energies of carbon complexes in bcc iron, in good agreement with DFT
calculations. This model reproduces the two screw dislocation core structures—the
easy and hard 1/2È111Í cores—exhibited in bcc iron [54, 55]. Study of both is crucial
to understanding solute-dislocation interactions. The easy core is the ground state in
pure iron, but solutes, such as hydrogen and carbon, have been shown to reconstruct
this core into the hard core configuration [232, 233]. Computationally cheaper models,
which do not incorporate quantum mechanics, such as the EAM, cannot reproduce
this behaviour.

5.2.1 Peierls Potential

To determine the Peierls potential of the 1/2È111Í screw dislocation, one followed the
procedure detailed by Itakura et al. [76]. Quadrupolar arrays of dislocations were
constructed by placing dislocations of antiparallel 1/2È111Í Burgers vectors in an “S”
arrangement [155], with initial displacements determined by anisotropic elasticity so-
lutions. See figure 5.2, left. A quadrupolar arrangement minimises the stress each
dislocation experiences in the simulation. These displacements were modified to be
periodic, thereby removing artificial stacking faults which would appear between pe-
riodic images after introduction of the dislocation dipole. This was achieved by the
subtraction of a linear error term from the superposition of displacement fields arising
from the dislocations in the simulation cell and its periodic images [209], as described
in section 4.2.2.1. To accommodate for the internal stress upon introduction of a
dislocation dipole into the simulation cell, an elastic strain was applied to the cell,
resulting in an additional tilt component to cell vectors [155, 209, 234]. Simulation
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cells were constructed with di�erent initial core positions, which were sampled from
the triangular region “EHS” (easy, hard and split) core positions, as detailed in figure
5.3. To fix the dislocation positions during relaxation, the three atoms surrounding
the easy core, for each dislocation, were fixed in Z coordinate during relaxation, where
Z is a È111Í direction, along the dislocation line. The k-point sampling mesh for each
of these cells was 5◊5◊30. All tight-binding calculations in this chapter had a charge
tolerance for self-consistency of 1 ◊ 10≠6.

Fig. 5.2: Schematics of dislocation simulation methods as found in section 4.2.2.1, repro-
duced here for convenience with bcc screw dislocation coordinate system. Left:
quadrupolar arrangement of dislocations in a simulation cell (grey square). This
arrangement minimises the stress experienced by each dislocation in a periodic
simulation. Cell vectors Ų1 and Ų2 are shown; Ą defines the cut plane between
the dipoles. The dislocation positions, and their corresponding Burgers vector di-
rection, are denoted by the symbols ¢ and §, which are antiparallel to each other.
Tilt components added to cell vectors to accommodate for the plastic strain are
not shown. Right: cluster method, where atoms are displaced according to the
displacement field from the screw dislocation at the centre of the cluster, denoted
by “§”. Atoms in the annulus R2 ≠ R1 are fixed in position to the anisotropic
elasticity solutions. Within R1, all atoms can relax. Periodicity is only imposed
in the Z direction.

The interaction energy between the dislocation dipole and periodic images was
defined di�erently to Itakura et al. [76]. We followed the prescription of Bulatov and
Cai [209] to find a regularised interaction energy, which is independent of the periodic
truncation limit, in contrast to the formulas quoted in Itakura’s papers. Details can
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Fig. 5.3: Diagrams of dislocation core positions. “E”, “H” and “S” correspond to the easy,
hard and split core positions respectively. Left: core positions as seen along the
Z = È111Í direction, along the dislocation line. Atomic positions are shown as
grey circles. Right: positions sampled within the triangle EHS used to determine
the Peierls potential.

be found in appendix B.
The Peierls potential �Ei

P, for an isolated dislocation at the ith core position, can
be calculated from

�Ei

P = �Ei

tbe ≠ �Ei

int, (5.1)

where � refers to quantities, per dislocation, relative to the relaxed easy core config-
uration (labelled as E/1, as in figure 5.3). e.g �Ei

tbe = 1
2(Ei

tbe ≠ EE
tbe) is the di�erence

in energy between a relaxed cell which has the two dislocation cores placed at position
i, Ei

tbe, and a relaxed cell which has the two cores placed in easy core positions EE
tbe,

divided by the number of dislocations in each of the simulation cells. Dislocation-
dislocation interaction energies are included in this term, due to dislocations in the
simulation cell—and periodic images—interacting with each other, as can be readily
seen in figure 5.2. To model the energy landscape of an isolated dislocation, these
interaction energies must be subtracted, which is achieved by the correction term
�Ei

int = 1
2(Ei

int ≠ EE
int).
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5.2.2 Preliminary calculations

To determine the binding energy of carbon to dislocations, we used the cluster method,
as shown in figure 5.2, right, such that one could study carbon-dislocation interactions
without the e�ect of other elastic interactions and strains as found in a quadrupolar
array. Simulation cells consisted of a cylindrical cluster of atoms, with a single dis-
location introduced into the centre using displacements from anisotropic elasticity
solutions. Each of the clusters were centred on the easy or hard core positions. The
cluster of atoms was split into two regions: a central region of dynamic atoms with
radius R1, and an annulus of atoms, between R1 and R2, which were fixed in position
to the displacements from anisotropic elasticity.

To confirm the anisotropic elasticity solutions were correct, we compared the dis-
placements against the analytic solutions to the straight screw dislocation, as given in
Hirth and Lothe [7]. In addition, energy scaling relations were verified. Dislocations
were inserted into cells of varying radii: R1 = x

Ô
2abcc, and R2 = (x+1)

Ô
2abcc, where

x œ {2 . . . 5}. The excess energy was defined as the energy di�erence of a cell with
a dislocation inserted, Ed, with respect to a perfect cell reference energy of the same
geometry,

Eexcess = Ecore + Eelastic = Ed ≠ Eperfect, (5.2)

where
Eelastic = (µb2/4fi) ln(R/rc), (5.3)

with R = R2 and rc = b.
Initially, large cells of R1 = 6

Ô
2abcc, and R2 = 7

Ô
2abcc with depth of single

Burgers vector, were relaxed for both the easy and hard cores, which consisted of 522
and 540 atoms respectively. The three atoms surrounding the core were constrained to
only relax in X–Y plane, to fix the dislocation upon relaxation. The k-point sampling
mesh for each of these cells was 1 ◊ 1 ◊ 24.

From the relaxed cells, a smaller region of 174 atoms, with R1 = 3
Ô

2abcc, and
R2 = 4

Ô
2abcc, was cut from the dynamic regions. This smaller cell was extended to a

thickness of 3b in the Z direction. Carbon interstitials were inserted into octahedral
sites near the dislocation core, in the middle layer. Exploiting reflection and rotational
symmetry, only 10 interstitial sites needed to be used to obtain the binding energies
of carbon ≥ 2 b from the core, denoted by iHj and iEj, where j œ {1 . . . 10}. The
final binding sites are denoted by Hk and Ej, where k œ {1 . . . 7}. The three atoms
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surrounding the core in the first and third layers were again constrained to relax only
in the X and Y directions. No such constraints were imposed on the middle layer.

Other relaxation techniques were tried. Of note, if one tried to pre-emptively
include the distortion induced carbon into the cell, by superposing the displacement
field generated from carbon in an otherwise perfect cell of 3b depth, of the same
geometry, thus modifying the dislocation core structure slightly—one does not find
the ground state structures as predicted by dipole calculations which allow all degrees
of freedom to be relaxed.

5.2.3 Fe-C binding energies

We calculated the carbon-dislocation binding energies as in Itakura [233]. The binding
energy is given by

Eb = ≠(Ed+C + Eperfect ≠ Ed ≠ EC ref.), (5.4)

where Ed+C is the total energy of a relaxed cluster with a carbon interstitial and
a dislocation, Ed is the total energy of a relaxed cluster with a dislocation and EC ref.

is the total energy of a relaxed perfect cluster with a single carbon in an octahedral
site. A positive binding energy indicates favourable binding.

The zero-point energy (ZPE) is calculated as in Itakura. Details can be found in
appendix C. The ZPE corrected binding energy is given by

EZ
b

= Eb + �Ez, (5.5)

where �Ez = Ez ≠ EC ref.
z

and EC ref.
z

= 202.5meV is the zero-point energy of carbon
situated in an octahedral site in a perfect cluster of the same size.

5.2.4 Carbon concentration around the dislocation line

Using the Fe-C binding energies, one can predict the equilibrium carbon concentration
of a carbon binding site cd, using a thermodynamical mean-field model [232, 235, 236],
under the assumption that carbon atoms around the core are su�ciently spaced such
that intersite interaction energies are negligible.

The concentration is given by,

ci

d

1 ≠ ci

d

= cbulk

1 ≠ cbulk
exp

3≠Ei

seg(cd)
kBT

4
, (5.6)
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where i denotes the ith carbon binding site. Ei

seg is the mean segregation energy defined
as

Ei

seg(cd) = ≠Ei

b + 2cdVCC, (5.7)

where Ei

b, is the corresponding dislocation-solute binding energy (in the convention
of attraction denoting a positive binding energy). ci

d
is the average concentration of

the ith carbon site bound to dislocations. cbulk is the carbon concentration in the bulk,
with cnom the nominal carbon concentration per Fe atom. VCC = 0.30eV is the carbon-
carbon first-neighbour repulsion term, which is calculated as in Ventelon [232]. This
repulsion term was calculated from carbon in the H1 prismatic site. It was assumed
that this repulsion term is the same for carbon in other sites.

In a given volume V , the number of carbon sites along the dislocation cores is given
by Nd = flV/b, with fl the dislocation density, and the number of octahedral sites is
Noct = 6V/abcc. This imposes constraints on the carbon concentrations: Noctcbulk +
Ndcd = Noctcnom/3, where the factor of 3 is because there are three octahedral sites
per Fe atom in the bcc lattice. Using this relation, equation (5.6) can be solved self-
consistently to give the carbon concentration around the core, as a function of nominal
carbon concentration and temperature. The nominal carbon concentration was taken
to be the maximum solubility of ferrite in the DER region, 0.02 wt% ¥ 1000 appm
[230]. Calculations of 10 and 500 appm were also performed. The dislocation density
was varied between 1 ◊ 1012m≠2, 1 ◊ 1014m≠2 and 5 ◊ 1015m≠2, to see the e�ects of
low densities up to the upper bound of dislocation densities ≥ 5 ◊ 1015m≠2 found in
Fe-0.61wt%C martensite [237].

5.2.5 Line Tension Model

The kink-pair formation enthalpy is defined as the minimum energy necessary to create
a kink-pair from a dislocation in a Peierls valley. One can find this by sampling the
energy landscape seen by a dislocation line which moves from one Peierls valley to
the next, from which the minimum enthalpy path can be sought. The di�erence
between the maximum enthalpy image on this path, corresponding to a dislocation
configuration in a transition state, and enthalpy of the initial state, is the kink-pair
formation enthalpy. One can e�ciently determine the minimum enthalpy path using
the String/Nudged Elastic Band (NEB) algorithms. In these methods, a set of images,
which interpolate between the initial and final states, are relaxed along the energy
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landscape to find the barrier.
From atomistic calculations of the Peierls potential and carbon-dislocation binding

energies, one can construct a line tension model of a dislocation from which we can
obtain the kink-pair formation energies as a function of stress and carbon content
[7, 76, 233]. This model views the dislocation as an elastic chain which moves in the
Peierls potential �EP.

The dislocation is modelled as a discretised line, with layer labels j. The enthalpy
of the dislocation line is given by:

HLT(‡) = K

2
ÿ

j

(P̨j ≠ P̨j+1)2 +
ÿ

j

�EP(P̨j) + (‡ · b̨) ◊ l̨ · P̨j ≠
ÿ

j,k

EC(|P̨j ≠ P̨ C
k

|), (5.8)

where K is a constant calculated from atomistics, �EP is the Peierls potential, ‡

is the stress applied and b̨ is the Burgers vector, with the dislocation line sense given
by l̨. P̨j corresponds to the dislocation core position in a given layer. EC(|P̨j ≠ P̨ C

k
|)

is the binding energy of a particular carbon k, at position P̨ C
k

, to a dislocation core
positioned at P̨j. The kink-pair formation enthalpy can then be found using the
string method to relax images which interpolate between the initial and final states
(straight dislocations in adjacent Peierls valleys), to find the height of the transition-
state barrier. A julia implementation of the string algorithm, accelerated by use of
an ODE solver, was used to relax the images [113]. The implementation was validated
on the dataset of Itakura et al. [76].

5.2.5.1 Line-tension model in a carbon environment

Dislocations form Cottrell atmospheres of carbon, which influence their motion. Anal-
ysis of the dynamics of a dislocation moving from one Peierls valley to the next, in
an environment of carbon in equilibrium with the bulk, can provide estimates of: the
mean energy barrier experienced by a straight dislocation segment upon glide, and the
mean kink-pair formation enthalpy, both as functions of nominal carbon concentra-
tion. Results of the latter can be used as inputs of the aforementioned self-consistent
kinetic Monte-Carlo (SCkMC) model of dislocation glide, which has been shown to
predict dislocation structures in hydrogen-charged iron [238]. In addition to this, it
provides estimates of mean dislocation velocity, in the limit of slow dislocation glide,
by allowing carbon to equilibriate instantaneously with dislocation motion. This is an
approximation. More accurate results would be possible by accounting for dislocation
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velocity in a self-consistent manner as will be discussed in section 5.4.
The binding sites of carbon around the easy and hard core dislocation positions

were found from atomistic simulations, detailed in section 5.3.3. Movement of a dislo-
cation between Peierls valleys generates intermediate core positions which lie between
the easy and hard cores. Carbon trap sites are not well-defined for these intermediate
dislocation positions. To circumvent this, trap site positions were smoothly mapped
between the easy and hard core positions by use of the dislocation core coordinate
Px by use of linear interpolation. Further information on the mapping of sites can be
found in appendix D.

The total carbon concentration on the dislocation line was calculated by the self-
consistent thermodynamical mean-field model, detailed in 5.2.4. The concentration
was fixed to the value obtained using the H1 binding energy, ctotal = cH1

d
, imposing

the assumption that the dislocation neither rejects or absorbs carbon, despite changes
in the carbon environment upon core movement. Thus carbon concentration on the
dislocation line remained in equilibrium with the bulk during the simulations.

The concentration of carbon in a trap site i, ce
i

was determined by use of Maxwell-
Boltzmann statistics [7], as done by Cottrell and Bilby [49], and Gong [238],

ce
i
(x) = ctotal

e≠Ei(x)/kbT

q
j e≠Ej(x)/kbT

. (5.9)

The total interaction energy of a dislocation in an environment of solutes is given
by the sum of the binding energy of a particular site multiplied by the corresponding
concentration

Ee
int =

ÿ

j

ce
j
Ej(x). (5.10)

Kink-pair formation enthalpies were obtained using the string method, as detailed
in section 5.2.5, and were performed 320K.

5.2.6 Di�usion Barriers

5.2.6.1 Atomistic Calculations

Elucidation of carbon di�usion barriers around the hard dislocation core was achieved
using the Climbing-Image Nudged Elastic Band (CI-NEB) method with either 5 or 9
images, with a spring constant of 6.8 eV/Å2. The CI-NEB algorithm is a modification
of the NEB algorithm mentioned in section 5.2.5, which allows for the highest energy
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image to climb, by neglecting the spring forces acting on the highest image. This gives
the true saddle point configuration, and therefore, an accurate energy barrier.

The fully-relaxed dislocation-carbon cells, resulting from the cluster method, as
detailed in section 5.3.3, were used for the initial and final images. Intermediate images
were initially determined by a linear interpolation between the two endpoints. The
same k-point mesh, 1 ◊ 1 ◊ 12 was used. The images were relaxed until all forces were
below 40 meVÅ≠1. To prevent rotations and translations [239], six degrees of freedom
were fixed (the forces resulting from these degrees of freedom were set to zero). Further
constraints on NEB relaxation were imposed, as for the carbon-dislocation interactions
in section 5.2.3: the three atoms surrounding the core in the top and bottom layers
were fixed in Z, such that the dislocation core remained fixed during the saddle-point
search: it was found that if these atoms were allowed to relax, the dislocation would
move into positions which were not commensurate with the boundary conditions.

To validate this method, and to compare the migration barriers to other interatomic
force methods, one performed CI-NEB calculations to find the migration barrier for
carbon in bulk bcc, between two octahedral sites. The calculations were performed
in a similar manner. Two cells of 250 atoms were created which each had carbon in
octahedral sites which were displaced from each other by the lattice constant. These
were relaxed to the same 1 ◊ 10≠5 Ry/bohr tolerance as above. These cells were
taken as the initial and final images in the NEB calculation. These were interpolated
between each other and then relaxed. Six degrees of freedom were fixed to prevent
rotation and translation during image relaxation, as before.

5.2.6.2 Calculation of attempt frequencies and approximate carbon veloc-
ities around hard dislocation core

In determining the atomic configuration of the energy barrier, one can calculate at-
tempt frequencies for carbon transitions in the bulk and the hard dislocation core.
From these frequencies, one can approximate an e�ective di�usion coe�cient prefac-
tor for carbon di�usion perpendicular to the dislocation line, from which the velocity
of carbon can be estimated. Comparison of the average velocities of carbon and dis-
locations will give insight into whether carbon does indeed di�use faster around the
dislocation core compared to the bulk, as suggested by EAM calculations of Nematol-
lahi [56], proving the feasibility of a dislocation-assisted carbon migration. One can
further use these frequencies in a discrete di�usion model of carbon migration around
a dislocation core, which has a further extension to an SCkMC model of thermally
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activated dislocation motion with carbon di�usion, which is detailed in the discussion,
section 5.5.1.

Following the work of Jiang and Carter [240], with reference to the notation of
Wert and Lu [241, 242], we have the di�usion coe�cient given by

D = n—d2� = D0 exp (≠Ea/kT ) , (5.11)

where n is the number of adjacent interstitial sites, — is the probability for di�usion
in a given direction and d is the jump length projected onto the direction of di�usion.
� = 1

·
= ‹ú exp (≠Ea/kT ) is the transition rate—which is the inverse of the mean time-

of-stay · of the the solute between jumps. Ea is an activation energy, given by the
di�erence in enthalpies between the initial and transition (saddle point) configurations.
D0 is the pre-exponential factor.

From harmonic transition-state theory [108, 109], the rate of transition is given by

� =
r3N

i=1 ‹I
ir3N≠1

j=1 ‹S
j

exp (≠Ea/kT ) , (5.12)

where we have the ith normal mode frequencies of the initial and saddle point config-
urations as ‹I

i
and ‹S

i
.

The normal mode frequencies can be found by the eigenvalues of the Hessian per-
taining to the initial and saddle configurations. The Hessian can be approximated for
each system by evaluating numerical derivatives of atomic forces upon the displace-
ment of each individual atom in each degree of freedom (X, Y and Z), keeping all
other atoms fixed. Due to the computational expense of calculating the full Hessian
using a first-order central di�erence scheme, which involves 2 ◊ 3N force calculations,
where N is the number of atoms in the system, one only built the Hessian of atoms
associated with the migration of carbon along the transition path: the first nearest
neighbours of carbon in the initial, saddle and final states.

In doing the Hessian calculations on a subset of the simulation cell, one assumes
that the force constants generated are not long-ranged. It was shown by Pettifor and
Finnis [243, 244] in Finnis-Sinclair models that the magnitude of the force constants,
out to more than six shells of neighbours, does not fall o� rapidly or monotonically
with distance. This long-ranged nature of force constants has also been shown in
tight-binding models of zirconium [245]. To rigorously determine if this is the case
for the dislocation-carbon system, one would need to analyse the properties of the
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force constants using linear response theory [81]. The long-ranged nature of the force
constants may hinder the predictive power of the attempt frequencies calculated in this
work, and an estimate of the error cannot be given accurately without such analysis.
We therefore estimate the error by the work of Finnis et al. [244], of whom looked
at the variation of the force constants in bcc metals as a function of band filling,
decomposing the contribution into n-body terms up to ten shells of neighbours. Note
that the model used in this paper was based on vanadium, where the valence electrons
were allowed to vary. Assuming ten shells gives reasonable convergence, one can
give an estimate of the error in the force constants from the sum of contributions
from three-body terms and higher in the case of a d-band with five valence electrons,
accounting for ferromagnetism. The total is ±1.5Nm≠1, giving the percentage error
as ≥ ±5%. The attempt frequency is given by the quotient of frequency products of
the initial and saddle configurations as seen in equation (5.12). For an estimate of the
minimum error, one assumes, that many of the frequencies in the initial and saddle
point configurations are similar in magnitude—bar that of the imaginary frequency in
the saddle point configuration—so the bulk of the error in the attempt frequency comes
from the error of one single frequency in the initial configuration, ≥ ±5%, in addition
to the error of the quotient of the resulting products, which gives an additional ±10%
error, giving the minimum error in the attempt frequencies as ±15%. The upper
bound in the error of the attempt frequencies comes from the quotient of frequency
products, which is ≥ ((3N) + (3N ≠ 1)) ◊ 5% ¥ 300% error, where N = 10 is the
number of atoms included in the Hessian calculation.
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5.3 Results

5.3.1 Peierls Potential

Fig. 5.4: Comparison of 2d Peierls potentials of the 1/2È111Í screw dislocation between
DFT [76] (top) and tight-binding (sd non-orthogonal middle, canonical d, bot-
tom). x ≠ y axes in units of d = a

Ô
2/3. Energy scale is in meV. “E”, “H” and

“S” correspond to easy, hard and split core positions respectively, with the latter
also corresponding to atomic positions. The relative energies between the di�er-
ent core positions is smaller in tight-binding compared to DFT. The split core
as seen in tight-binding is reminiscent of EAM potentials, where the split core
energy is lower than that of the hard core. The discrepancy is probably due to
an insu�cient repulsion at close range within the tight-binding model.
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Comparison of 2d Peierls potentials of the 1/2È111Í screw dislocation between DFT
and tight-binding models can be found in figure 5.4, with data found in table 5.1. The
sampled energies were interpolated using 2d cubic splines. The relative energies be-
tween the di�erent core positions was found to be smaller in both tight-binding models
compared to DFT. These are artefacts of the models, which have been reproduced in
atomistic NEB calculations of the 1/2È111Í screw dislocation Peierls barrier using the
canonical d-band model: the Peierls barrier in this model is approximately half that
of DFT [54].

The Peierls potential of the d-band model was found to be more reminiscent of
DFT, compared to the s-d model; but the deviation is small: the maximum di�erence
between the d/s-d models being ≥ 10 meV, with the d-band model being, on average,
≥ +3 meV higher.

a) b)

Fig. 5.5: Left: Peierls barriers from atomistic calculations using canonical-d-band tight-
binding, DFT and the Mendelev EAM potential, plots of the corresponding dis-
location pathways can be found in figure 5.13. The EAM potential of Mendelev
[116] has an unphysical well in the centre of the potential, while tight-binding
and DFT produce single-humped potentials. Right: Peierls potential along the
hard-split line. One can see in s-d tight-binding model pathway is more similar
in shape to the EAM potential of Mendelev [116]: it decreases consistently from
the hard core to the split core, but by a subtle amount in comparison. In DFT
one finds a saddle point between the hard core and the midpoint.

The split core energy is lower than that of the hard core, which is reminiscent of
EAM potentials [76], but not as severe, as seen in figure 5.5. Some of this discrep-
ancy can be attributed to the to erroneous interaction term included by Itakura et
al., as detailed above—interaction energies can become arbitrarily high, if not made
independent of truncation limit—but likely there are e�ects in DFT which are not
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Pos �Eint �Etbe �Esd

P �Ed

P �EDFT
P

1 0 0 0 0 0
2 –0.7 7.3 7.9 6.3 3.2
3 –1.4 16.0 17.4 15.1 19.2
4 –2.0 22.2 24.2 20.4 31.1
5 –2.5 24.8 27.4 22.6 39.3
6 –3.3 3.0 6.3 4.6 11.5
7 –6.5 7.1 13.6 12.7 39.9
8 –9.6 13.0 22.6 22.7 75.2
9 –12.5 5.4 17.9 26.8 108.9
10 –4.8 22.1 26.9 23.0 34.8
11 –7.2 18.2 25.4 23.5 37.9
12 –9.8 14.0 23.8 24.4 60.7
13 –3.8 11.5 15.3 13.2 17.6
14 –6.9 15.1 22.0 20.3 29.9
15 –4.3 18.6 22.9 20.0 39.7

Table 5.1: Table of energies used to calculate the Peierls potential. All values in meV.
�E

DFT
P values taken from [76].

encapsulated fully within the tight-binding description, such as a lack of core electron
repulsion upon deformation of the lattice, which would increase the relative energy
di�erence. Consequences of this discrepancy on future kMC simulations are discussed
in section 5.4.

The transitional kink shape from the s-d and d-band Peierls potentials may di�er
compared to DFT, with dislocation core positions possibly being situated closer to
the split core position, similar to EAM potentials [76, 116]. Following the Peierls
potential along the H-S direction, as seen in figure 5.5, we see that the Itakura et
al. potential has a saddle point minimum, which corresponds to the dislocation core
positions found upon kink-pair formation [76]. In the s-d model, the Peierls potential
decreases monotonically along the H-S line and there is a subtle maximum found in
the d-band model. This data suggests there may be a deviation in the dislocation
path found in DFT, in moving from one Peierls valley to the next along the H-S
line. Atomistic calculation of the Peierls barrier between two easy core positions in
the canonical d-band model found core positions of the transitional kink state to go
through the metastable point, similar to DFT [54], which suggest the deviation may
not be severe. Section 5.3.5 discusses the e�ect the Peierls potential has on the pathway
taken by a dislocation moving from one Peierls valley to the next.
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5.3.2 Preliminary calculations

To validate the cluster simulation method, the excess energy, defined as the di�erence
in energy between a cell with a dislocation, and a perfect reference cell, was plotted as
as function of ln(R/rc), where R = R2 of the cluster and rc = b, as seen in figure 5.6.
In isotropic elasticity theory, this should give a linear dependence where the gradient
corresponds to µb2/4fi, with the y intercept corresponding to the core energy Ecore.
This is well reproduced by our model, except at low ln(R/rc) as expected, where the
cell size is not large enough to accommodate for su�cient relaxation of the dislocation
core, increasing the core energy, which is not accounted for in elasticity theory.

Fig. 5.6: Excess energy of dislocation clusters with di�ering radii for both the easy and
hard core configurations. The prediction from elasticity theory is given by the
black, dashed line. Deviation of both cores occurs when the cell size is small,
creating an increase in the core energy, which elasticity theory cannot account
for.

The energy cost to transform from the easy to the hard core can be estimated by
the di�erence in excess energies between the cores in the limit of ln

1
R

R0

2
æ 0. At the

smallest measured value, one finds that the core energy di�erence �EEasy-Hard
core = 76

meV/b, which is in good agreement with the DFT value of 82 meV/b [76].

5.3.3 Fe-C binding energies

As found in DFT simulations by Ventelon [232], when a carbon was placed in the
vicinity of a relaxed easy dislocation core—in either of the two nearest, distinguishable,
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Initial Final
iH1, iH2 H1
iH3, iH4 H2

iH5 H3
iH6 H4
iH7 H5
iH8 H6

iH9, iH10 H7

Table 5.2: Decay relations between the initial and final sites upon relaxation of carbon
interstitials around the hard core.

octahedral sites—a spontaneous reconstruction of the dislocation core occurred: from
easy to hard. Upon reconstruction, the dislocation core moved to a neighbouring
triangle, when looking along the È111Í direction, where the carbon found itself situated
in the centre. This will be called a prismatic site, as in Ventelon’s paper. This confirms
that both hard and easy dislocation cores must be studied to fully understand screw
dislocation behaviour in bcc iron.

The binding energies of carbon to both the hard and easy cores can be seen in table
5.3, with the resulting distribution of carbon in figures 5.7 and 5.8. The distribution of
carbon strongly depends on the type of core it finds itself situated near. The easy core
only significantly modifies the position of the iE1 site, to the E1 site, situated in the
centre of an adjacent triangle. All other sites are una�ected, so there is a one-to-one
correspondence between all iEj and Ej sites, where j œ {2 . . . 10}. There are stable
carbon positions available close to the triangular region containing the core, but not
inside.

Carbon favours a prismatic site within the hard core (H1), which has the highest
binding energy, 1.29 eV, of all sites considered. There are no binding sites apparent
in a triangular annulus (of width abcc

Ô
2/2) surrounding the hard core triangle due to

the destruction/volume reduction of octahedral sites near the hard core. The initial
octahedral sites, iH1 and iH2 decay to the H1 site. Similarly, iH3 and iH4 decay to
the H2 site, with iH9 and iH10 decaying to a H7 site. Relations between each of the
sites is given in table 5.2.

Note that interactions between carbon atoms around the core are not taken into
account here: figures 5.7 and 5.8 are purely diagrammatic and not what one ex-
pects the true distribution of carbon around a screw dislocation would be. Carbon
is strongly repulsive at first nearest-neighbour distances, which would modify each of
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these distributions.

Fig. 5.7: Initial (top) and final (bottom) positions and binding energies (eV) of carbon
around the easy core. Binding energies are not shown for the initial positions.
Top: initial positions before relaxation. Bottom: final positions and binding
energies after relaxation. The core was constrained by fixing the top and bottom
three atoms surrounding each of the cores. As shown by Ventelon [232], the first
and second closest octahedral sites to the hard core decay to a prismatic position
inside the hard core.
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Fig. 5.8: Initial (top) and final (bottom) positions and binding energies (eV) of carbon
around the hard core. The core was constrained by fixing the three atoms sur-
rounding each of the cores in the top and bottom layers. As shown by Ventelon
[232], the first and second closest octahedral sites to the hard core decay to a
prismatic position inside the hard core.
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Site Type distance from core [b] Ez [eV] �Ez [eV] Eb [eV] Ez

b
[eV]

E1 0.57 0.185 –0.018 0.793 0.775
E2 0.70 0.202 –0.001 0.793 0.793
E3 0.99 0.205 0.002 0.137 0.139
E4 1.21 0.208 0.005 0.229 0.234
E5 1.36 0.210 0.008 0.784 0.791
E6 1.66 0.209 0.007 0.597 0.603
E7 1.89 0.206 0.003 0.385 0.388
E8 1.77 0.203 0.000 0.177 0.178
E9 1.52 0.201 0.000 0.683 0.683
E10 1.95 0.202 0.000 0.067 0.067
H1 0.00 0.196 –0.006 1.298 1.291 [0.881a, 0.790b ]
H2 1.19 0.210 0.007 0.691 0.698
H3 2.12 0.209 0.007 0.461 0.467
H4 1.91 0.207 0.005 0.311 0.316
H5 1.80 0.208 0.006 0.403 0.409
H6 1.40 0.207 0.005 –0.119 –0.114
H7 1.35 0.206 0.006 0.825 0.819

Table 5.3: Table of energies leading to the zero-point energy corrected binding energy
using the cluster method for simulation of dislocation-carbon interactions. a

Tight-binding quadrupolar array results, starting from a fully relaxed easy core
quadrupole extended to a depth of 3b with carbon introduced into the iH1 site
in the middle layer, by both dislocations. b DFT results of Ventelon, using
the same quadrupolar configuration as in a. In both quadrupolar simulations,
carbon ended up in the H1 site.

These binding energies agree well with experiment and atomistic/elastic calcula-
tions. EAM simulations by Clouet [212, 246] found a maximum binding energy of
0.41 eV by calculating the elastic dipole tensor, as seen in Bacon, Barnett and Scat-
tergood [169], from multiple relaxations at various volumes. Hanlumyuang et al. [214],
similarly conducted DFT and EAM calculations for the interaction energy 12Å from
the core, and their calculations agreed with the continuum limit of the aforementioned
elastic dipole tensor, with a binding energy of 0.2 eV. In DFT calculations by Ventelon
[232], the binding energy of a carbon in a hard core prism configuration was found to
be 0.79 eV for a thickness in the Z direction of 3b (0.73eV for 6b). This is significantly
lower than the 1.29eV interaction energy of tight-binding. This discrepancy can be
partially explained by the fact that the cells have not been allowed to relax with all
degrees of freedom, as in the Ventelon results: the three atoms around the screw core
are fixed in Z so the dislocation core position does not change upon relaxation. Re-
peating the calculation for the binding of a H1 carbon to a screw dislocation using a
quadrupolar array, allowing for all atoms to relax, gives a binding energy of 0.88 eV.
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This agrees very well with the DFT results of Ventelon [232], and suggests that core
relaxation is important for determining the prismatic site binding energy.

A source of the discrepancy between DFT and tight-binding is likely the fitting of
the tight-binding model itself. The Peierls barrier of this s-d model of iron, necessary
for Fe-C interactions, has been shown to be half that found in DFT [54], but the
solution energies for Fe-C defect complexes are well described. This implies that the
relative bonding strengths between Fe-Fe and Fe-C are consistent with DFT, but there
is insu�cient repulsion between Fe-Fe species upon deformation. As such the energy of
the dislocated lattice is not as great as it should be when simulating dislocation-carbon
systems, resulting in a larger solute-dislocation binding energy from tight-binding.

5.3.4 Carbon concentration around the dislocation line

The variation of carbon concentration on the dislocation line for the binding sites
of the easy and hard cores can be seen in figure 5.9. We see at low temperatures,
all dislocations are decorated with carbon. As temperature increases, the amount of
carbon decorating the dislocations starts to decrease. Due to the lower binding energy
of carbon to the easy core, desaturation occurred at a lower temperature compared to
the hard core. Dislocation densities near the upper bound of what has been observed
in martensite, fl ¥ 1015m≠2, reduce the temperature at which carbon concentration
starts to decrease on the dislocation core. Lower nominal carbon concentrations cause
carbon concentrations around the dislocation to decrease at a lower temperature.

In the high-purity iron case, Cnom = 10 appm, we find at dislocation densities above
fl ¥ 1015m≠2, that there is a reduction in the maximum concentration permitted in the
material, with increasing dislocation density. This is due to the fact that there is not
enough carbon for all of the dislocations, as such the concentration on the dislocation
line decreases.

In the operating temperature range of 40 ≠ 90¶C = 310 ≠ 360¶K, we expect most
hard core sites are saturated. Given the high concentrations of the E1/E2 sites around
the easy core in this range, we expect all dislocations will be of the hard core type,
due to reconstruction of the easy core by the adjacent carbon.
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Fig. 5.9: Variation of carbon concentration on the dislocation line cd for the binding sites of the hard core (Hi) and easy core (Ei).
Solid, dashed, dotted and dash-dotted lines correspond to dislocation densities of 1◊1012 m≠2, 1◊1014 m≠2, 1◊1015 m≠2

and 5 ◊ 1015 m≠2 respectively. The nominal carbon concentrations are 10, 100, 500 and 1000 appm from left to right,
where around 1000 appm corresponds to the concentration of carbon at the solubility limit of C in ferrite: 0.02wt%. cd

and cbulk reached self-consistency, with an absolute tolerance of 1 ◊ 10≠6. C-C interactions were taken into account with
the repulsive first-neighbour interaction energy VCC = 0.30 eV. No intersite interactions were taken into account. The
maximum concentration of carbon around the easy core, drops o� at a lower temperature than that of the hard core due
to lower binding energy of the Ei sites compared to the Hi sites. The operating temperature is taken to be 50¶ C = 320¶

K.
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5.3.5 Line Tension Model

5.3.5.1 Prerequisites

The K coe�cient for the line tension model was calculated from atomistic simulations,
using the method of Itakura et al. [76], by calculation of a Hessian from the displace-
ment of atoms surrounding the dislocation core. Tight-binding gave K = 0.734 eVÅ≠2,
which agrees well with DFT, where K = 0.816 eVÅ≠2.

Fig. 5.10: Distance dependence of the binding energies of carbon to the 1/2È111Í screw
dislocation in iron. Positive binding energies denote a favourable binding.

Dislocation-carbon binding energies were found to decay with distance, as seen in
figures 5.10 and 5.11. A Lorentzian was fit to specific binding energies such that a
continuous function could be used to describe binding within the line tension model.
This is a purely empirical model. The choice of sites used for the fitting is discussed
in section 5.4.

This distance-dependence agrees well with previous calculations of the binding
energy at larger distances from the core [214].

5.3.5.2 Kink-pair formation in pure iron

In figure 5.12, one can see the Px and Py core positions which result from the highest
enthalpy image of kink-pair formation in pure iron for the canonical-d and sd tight-
binding models, where the DFT comparison is from [76]. Plots of the corresponding
dislocation core pathway, Pj = (P j

x
, P j

y
), looking down the dislocation line, are shown

in 5.13.
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Fig. 5.11: Parameterised distance dependence of carbon binding energies to the 1/2È111Í
screw dislocation in iron. The sites chosen to fit to were determined by those sites
a prismatic carbon in a hard core configuration would find itself, if the dislocation
were to move without it along the X = È2̄11Í direction. The triangle, labelled
Hanlumyuang, refers to the binding energy resulting from measurement of the
elastic dipole tensor from DFT calculations evaluated at 12Å [214]. Binding
energy of hydrogen to the 1/2È111Í screw dislocation also shown for comparison
[233]

The Px line shape agrees well with the DFT-based results. The kink width was
found to be slightly wider: Wk ¥ 11b in tight-binding from the line-tension model,
compared to 10b in DFT and atomistic tight-binding results [54]. The larger width
from tight-binding compared to DFT results from the width being proportional to
b
Ò

K/�EP [76], with the discrepancy between the Ktbe and KDFT, being smaller than
that of the Peierls potential. Di�erences in the Py line shape are noticeable, with the
canonical-d model reproducing the result closest to the DFT Py line shape.

The di�erences in line shapes manifest themselves clearly in plots of the dislocation
pathway, figure 5.13, where we see the path a dislocation takes looking down the
dislocation line. The core pathway dips below the mid-line in both the d and sd

models, with a more pronounced e�ect being shown by the sd model. Apart from
this discrepancy, we see there is good agreement between tight-binding to DFT when
compared to the EAM potential of Mendelev [116] in which we see a path which passes
close to the split-core position. This is expected due to the low overall values of the
Peierls potential of the EAM, as seen in figure 5.5.

The kink-pair formation enthalpies obtained from the tight-binding models can be
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Fig. 5.12: Core positions of the line tension model from DFT (blue) and tight-binding
(yellow) for the middle image corresponding to the minimum energy pathway
(MEP) and the kink-pair formation energy. Images were relaxed using the ODE
String method of Makri and Ortner [113]. Px and Py correspond to the x/y-
coordinate of the dislocation core position in each of the discretised layers of the
dislocation. One finds that the kink width in tight-binding is wider than that
found in DFT, which corresponds with the fact that the width is proportional
to b


K/�EP , where the reduction in �E

tbe
P

is greater than the reduction in
Ktbe. .

found in table 5.4. Tight-binding underestimates the kink-pair formation enthalpy by
0.18 eV, in comparison to DFT. This can be attributed to the di�erence in Peierls
potentials between DFT and tight-binding.

Method Hk
DFT 0.71 eV
s-d TB 0.56 eV
d TB 0.53 eV

Table 5.4: Kink-pair formation energies between DFT, and the two flavours of tight-binding
used with the line-tension model .

5.3.5.3 Kink-pair formation enthalpy with a single carbon

To understand how kink-pair nucleation is a�ected by carbon, one can study the
formation of a kink-pair but with the additional interaction of a single carbon ahead
of the dislocation. With one single carbon, the dislocation core will not reconstruct,
as such we perform this for a dislocation moving from from an easy core position, to
an adjacent easy core position.
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Fig. 5.13: Comparison of minimum energy pathways from atomistic calculations to the
line-tension model. Dashed lines correspond to atomistic calculations. Solid lines
are results from the line-tension models. Tight-binding follows a pathway much
closer to that of DFT. EAM potentials predict that the dislocation core goes to
the split core and then back to the easy core. Even though the Peierls landscape
found in tight binding has similar characteristics to the EAM in terms of the
energetic ordering of di�erent core states, the description of the minimum energy
pathway of the 1/2È111Í screw dislocation as it moves between core positions is
in good agreement with DFT.

We place carbon in the E1 site, the closest and one of the highest energy binding
sites of carbon to the easy dislocation core. The carbon is fixed in place during kink-
pair formation, as such, we are assuming a regime in which the dislocation velocity is
much greater than the di�usion of carbon. Carbon-dislocation interactions are only
permitted between the dislocation segment closest to the carbon.
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Fig. 5.14: Comparison of Px lineshapes for the sd and d models in pure iron (top) and
iron with a single carbon interacting with the central dislocation segment in an
E1 site (bottom). The highest enthalpy images, Hmax, for each of the models
are shown in black. In pure iron, the d model lineshapes are o�set from the sd

model due to the di�erent Peierls potentials involved. With carbon along the
path of migration, we find the dislocation intersects the solute, due to its large
binding energy.

Px line shapes obtained during kink-pair formation can be seen in figure 5.14.
The addition of carbon causes a cusp in the dislocation line towards the carbon in
the initial and final images, due to the reduction in potential the central dislocation
segment experiences due to carbon interaction. As the dislocation bows out to form
a kink pair, the cusp becomes less prominent. As we reach the transition state, the
dislocation image intersects the carbon position, to minimise energy.

The pathway corresponding to the highest enthalpy image, can be seen in figure
5.15. Looking along a direction, we see the path a dislocation takes in going between
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adjacent Peierls valleys is asymmetric, as expected due to the strong binding of carbon.
These features agree very well with the line tension model in Itakura [233], focussing

on the case of dislocations undergoing kink-pair formation in the presence of a single
hydrogen atom.

Fig. 5.15: The migration path of the highest enthalpy images for both the sd and d tight-
binding models with a single carbon in an E1 site. Carbon causes a deviation
of the kink-pair formation path from the pure iron case (solid lines), due to
carbon-dislocation binding.

The kink-pair formation enthalpy of sd and d iron models, in both pure iron, and
with carbon ahead of the dislocation line are shown in figure 5.16. The shape agrees
well with results of the line tension model of Itakura et al. [76], and from atomistic
calculations of EAM [57] and GAP [248] Fe potentials. We find that carbon produces
a consistent reduction of ≥ 25meV to the kink-pair formation enthalpy when placed
ahead of the dislocation line. The reduction is surprisingly small compared to the e�ect
of hydrogen interaction with dislocations [233], which gives a reduction of ≥ 110meV.
The discrepancy between carbon and hydrogen is due to the more gradual decrease of
the carbon-dislocation interaction—over the distance between the initial and transition
states—compared to the hydrogen-dislocation interaction, as shown in figure 5.11.
Comparing the two interaction functions, we have at the Peierls valley Pdisl = (0, 0),
and P H = P C = (1.17Å, 0.68Å) giving a distance d = 0.54b between the dislocation
and the solute. The di�erence in the interaction energy for a dislocation segment in
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Fig. 5.16: Dependence of the kink-pair formation enthalpy with increasing stress on the
[111](11̄0) direction. Solid lines: pure iron. Dotted lines: carbon ahead of the
dislocation line in an octahedral site. Experimental data taken from Spitzig
[247].

the final position in interaction for hydrogen �EH
b

= Eb(H, 0) ≠ Eb(H, 0.54b) = 150
meV, whereas for carbon we have �EC

b
= Eb(C, 0)≠Eb(C, 0.54b) = 40 meV. Therefore,

in the dilute limit, it is the long-range of carbon-screw dislocation interactions which
inhibits a strong solute-enhanced localised plasticity e�ect. Short-ranged dislocation-
solute interactions, i.e. interactions which decay quickly due to an insu�cient solute-
induced lattice distortion—do not produce a long-ranged elastic field which binds the
solute to the dislocation—which results in significant enhancements in local plasticity.

Due to the longer range of the interaction function, we expect that a single car-
bon will provide comparable decreases to the kink-pair formation up to distances up
to 5b, if placed ahead of the dislocation line. At equilibrium, where carbon exhibits
long-range ordering along the dislocation line in the H1 and H2 sites [249], we can
expect a much larger decrease in the kink-pair formation enthalpy. Line-tension sim-
ulations in ordered carbon environments are necessary to account for this properly.
We can approximately treat some of these e�ects using an e�ective carbon-dislocation
interaction along the dislocation line during kink-pair formation, as shown in section
5.3.6.2.

The stress at which the kink-pair formation enthalpy becomes zero is the Peierls
stress. In the zero temperature limit, we can approximately account for quantum
e�ects, such as tunnelling and zero-point energy, by subtracting the Wigner correc-
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tion, determined by quantum transition state theory [57, 250], from the kink-pair
formation enthalpy. Calculating this correction within atomistic tight-binding simula-
tions is currently intractable. The correction has been calculated using the Mendelev
EAM potential [116] for a screw dislocation undergoing kink-pair nucleation [57]. The
Wigner correction obtained is 0.09eV. We find that the Peierls stress obtained for both
the sd and d models is ¥ 1.2GPa, see table 5.5.

Model Peierls Stress [GPa] Wigner-corrected Peierls Stress [GPa]
sd-TB 1.95 1.35
C sd-TB 1.90 1.30
d-TB 1.85 1.30
C d-TB 1.75 1.20
DFT [Kraych, 2019] 2.00 1.20
DFT [Itakura, 2012] 1.00 [*2.10] 0.80 [*1.60]

Table 5.5: Peierls stress of screw dislocation taken from the line tension model with the
e�ect of the correction to the Peierls stress from quantum e�ects, estimated by
Proville [57]. DFT results are found from papers of Itakura et al. and Kraych
[76, 251], where Itakura et al. used a DFT-derived line-tension model, and
Kraych used DFT NEB calculations. ú corresponds to use of Itakura et al.
DFT data in this implementation of the line-tension model. In accordance with
other DFT-derived line-tension models, their Peierls stress is a factor of two
out.

Discrepancies in the kink-pair formation enthalpy compared to experimental mea-
surements of Spitzig [247], can be attributed to multiple sources. In bcc metals, ex-
perimental measurements of the CRSS, which can be linked to the kink-pair formation
enthalpy, are thought to measure the stress required to operate Frank-Read sources
which have been blocked due to the back stress of generated screw dislocations [252].
As mixed dislocations bow out from the source, long screw segments form—due to the
higher mobility of mixed/edge character segments compared to screw segments. Be-
tween the source and the screw dislocations, there are non-screw dislocations, stresses
from which act in conjunction with applied stress to reduce the necessary CRSS by 2-3
times. As such the enthalpy barrier obtained from the experimental CRSS measure-
ments of Spitzig, cannot be directly compared to the true kink-pair formation enthalpy
necessary for a single screw dislocation to undergo thermally-activated movement.
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5.3.5.4 Kink-pair nucleation rate

One can use the Arrhenius law in equation (5.11), to calculate the attempt frequency
of a process p, given an activation energy barrier Ea [110],

�p(Ea, T ) = ‹ú
p exp

1
≠ Ea

kBT

2
, (5.13)

where, considering the process of kink-pair formation, � is the inverse of the mean
time-of-stay of the dislocation in a Peierls valley before forming a kink-pair � = 1

·disl.

and ‹ú =
r3N

i=1 ‹
init.
ir3N≠1

j=1 ‹
S
j

is an attempt frequency for the transition of the kink-pair over the
activation barrier Ea.

The kink-pair nucleation rate of a dislocation depends linearly on the number of b
length segments of which it is composed: the greater the length, the more likely that a
stable kink-pair will be formed under thermal fluctuations. For a dislocation of length
Nd Burgers vectors, the attempt frequency is given by, as in as Itakura et al. [233]:

�d(Hk(‡), T ) = �k(Hk(‡), T )Nd, (5.14)

where Hk(‡) is the kink-pair formation enthalpy. Experimental results of in situ
straining of Fe from Caillard [253], enable calculation of the stable kink-pair nucleation
rate: assuming b = 2µm, T = 300K and an applied stress of 33MPa one obtains
�d(Hk(33MPa), T = 300K) = 81s≠1.

There will be an enhancement of the rate due to carbon occupying sites ahead
of the dislocation, in the limit of fast glide. Given a concentration of carbon on
the dislocation line, cd, for the sites ahead of the dislocation, we can define a rate
enhancement factor,

fr(cd, �Hk, T ) = 1 + cdWk{exp(�Hk/kBT ) ≠ 1}. (5.15)

where �Hk = Hk ≠ HC
k

= 25meV and Wk ¥ 11b is the kink-width [77]. This
assumes the increase in the rate comes only from kink segments which all interact
equally strongly with the carbon ahead. Assuming T = 300 K, and assuming the
concentration of carbon is that of the E2 site, cE2

d
, we obtain enhancement factors as

shown in table 5.6.
These rate enhancements are an order of magnitude less compared to what one

finds with hydrogen in iron [54], due to the small reduction to the kink-pair formation
enthalpy with carbon.
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cnom [appm] fr, Rate Enhancement factor TU [K]
10 4.4 745

100 7.9 1329
500 17.3 3043

1000 17.3 3043

Table 5.6: Enhancement factors to the kink nucleation rate and corresponding critical tem-
peratures. cd was taken as the value reached from self-consistency at T=300K
for the E2 site, at a dislocation density of fl = 1015 m≠2, as seen in figure 5.9.
Kink-pair nucleation rate enhancements steadily increase until concentrations
at which all dislocations are decorated with carbon, in the cases of Cnom Ø 500
appm. The critical temperatures are all well above operating temperature, so
we can expect rate enhancements during operation.

Significant enhancement of the nucleation rate occurs when the rate enhancement
factor is on the order of fr ≥ 1 or greater. Defining cE

d
= 1

Wk{exp(�Hk/kBT )≠1} , one can
impose a condition when cE

d
> cd, defining a critical temperature TU after which these

enhancements are not deemed important. See table 5.6. All the critical temperatures
are found to be well above operating temperature.

These results only account for the e�ect of a single carbon just ahead of the core in
the dilute limit. There are multiple, strong binding sites, and the influence of carbon
is significant even at long distances from the core, as seen in figure 5.11. With the
introduction of more carbon, there will be a reconstruction from the easy to the hard
core. With reconstruction, ordering phenomena of carbon has been found along the
screw dislocation in Fe, which would decrease the kink-nucleation rate [249]. Ising
models parameterised on ab-initio data give equilibrium concentrations of di�erent
carbon trap sites along the dislocation core, accounting for carbon-carbon repulsion.
They predict H1 and H2-type sites in adjacent layers can have concentrations which
are ≥ 0.55 and ≥ 0.22 respectively, when the nominal carbon concentration is 1000
appm, at 300K. With the larger concentration of carbon in the H1 site, one expects
an increase in the kink-pair formation enthalpy, due to carbon in other sites not being
able to overcome the strong binding of the prismatic carbon to the core. The mean
e�ect of carbon at di�erent concentrations, in the limit of slow glide is discussed in
section 5.3.6.

5.3.5.5 Kink-trapping

Kink-trapping is the energetic barrier to kink-migration along the dislocation line
due to the change in binding energy of a kink sweeping past a defect. The kink-
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trapping e�ect due to carbon can be estimated in the dilute limit as follows [233]. If a
kink-pair were to form with a carbon in an E1 site behind the dislocation, the carbon-
dislocation binding energy will change. We can assume carbon remains in its site upon
movement: the barrier to kink-migration has been shown to be small [54, 233, 238],
as such kink-migration is orders of magnitude faster than that of carbon and even
hydrogen di�usion.

As the kink sweeps past, the E1 site becomes an E6 site, resulting in a di�erence
in binding energy of �EE1æE6

b
= 0.775 ≠ 0.603 = 172 meV. This trapping e�ect is

expected to decrease with applied stress, as shown in Itakura et al., but this is left for
future work.

This is an important e�ect to account for, in the context of a SCkMC models,
as solute drag has been shown to reduce the kink-migration velocity su�ciently, such
that jogs can form on dislocations due to the collision of kinks on di�erent glide planes
causing pinning and the formation of edge dipoles seen in experiment [238].

5.3.6 Line-tension equilibrium conditions

5.3.6.1 Dynamics of straight 1/2È111Í screw dislocation

Figure 5.17 shows the potential a straight screw dislocation experiences as it moves
between Peierls valleys in an equilibrium carbon environment, allowing carbon to
redistribute between trap sites upon glide. The same carbon binding energies were
used for both the sd and d models. The potential a dislocation experiences decreases
as carbon concentration is increased. This is due to the stabilisation of the hard core
position with increases in carbon content. With stabilisation, E1/2 sites are distorted
into H1 sites. At concentrations > 20appm, the mean carbon-dislocation interaction
energy becomes greater in magnitude than the bare Peierls potential, resulting in a
potential well.
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Fig. 5.17: Enthalpies of straight screw dislocation in the line-tension model in an environ-
ment of carbon with concentrations determined by thermodynamical mean field
model. Carbon concentration on the dislocation on the dislocation line is in equi-
librium with the bulk according to the concentration given by the H1 site, where
carbon is able to redistribute between the sites according to Maxwell-Boltzmann
statistics.

Fig. 5.18: Enthalpies of straight screw dislocation in the line-tension model in an environ-
ment of carbon with concentrations determined by thermodynamical mean field
model. Concentration of carbon in each of the sites is fixed to its initial value,
simulating the limit where carbon does not have time to equilibriate with dislo-
cation movement.

Figure 5.18 shows the case where the concentration of carbon is not allowed to
equilibriate: simulating the limit of rapid glide, where the occupancy of carbon in all
trap sites is fixed to the value determined at the initial easy-core configuration of the
straight dislocation. The occupancies decrease rapidly with distance from the core. As
such, the energy a straight dislocation experiences, relative to the initial dislocation
position, increases with distance from the Peierls valley, due to a reduction in the
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dislocation-carbon interaction energy from a lack of carbon occupancy.
In reality, we have a situation which is between the two limiting cases. This can be

accounted for by a continuity term which is dependent on dislocation velocity [238].

5.3.6.2 Dynamics of kink-pair formation in equilibrium

The line-tension upon kink-pair formation, in the limit of slow glide, can be seen in
figure 5.19. One finds the spring term, which is zero for the aforementioned straight
dislocation dynamics, gives a large contribution in the maximum enthalpy images.
It is significantly larger than the Peierls potential, such that the double-humped na-
ture of the sd-model is smoothed out. As the hard core is stabilised with increasing
carbon content at 320K, the line tension decreases, due to the negation of the bare
Peierls potential with increasing carbon-dislocation interaction energy. At nominal
concentrations greater than 20 appm, the string method finds lower energy disloca-
tion configurations away from the straight initial easy core position favoured at lower
concentrations.

Fig. 5.19: Enthalpies of the maximum enthalpy images upon kink-pair formation with in-
creasing carbon content. Carbon interaction causes a reduction in the enthalpy
barrier as due to the negation of the e�ect of the bare Peierls potential. As the
nominal carbon concentration passes 20 appm, the hard core is stabilised, thus
causing the string method algorithm to find a global minimum closer to the hard
core position.

With increasing carbon concentration, both tight-binding models exhibit a devi-
ation of the maximum enthalpy pathway towards the hard core, as shown in figure
5.20. At each concentration, the path a dislocation takes in the d tight-binding model
is closer to the hard core, due to the morphology of its Peierls potential.
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Fig. 5.20: Maximum enthalpy pathways and lineshapes found upon kink-pair formation
in an environment of carbon for both tight-binding models at di�erent nominal
carbon concentrations. Concentrations shown are before the easy core becomes
unstable. With an increase in carbon content, the path starts to deviate towards
the hard core. Right: Px lineshape corresponding to di�erent carbon concentra-
tions of the canonical-d tight-binding model.

The lineshapes of the Px dislocation coordinate on kink-pair formation, figure 5.20,
broaden with carbon content due to the attraction of the dislocation line to the carbon
sites which are distributed across the length of the dislocation.

Fig. 5.21: Kink-pair formation enthalpy dependence on nominal carbon concentration with-
out the application of stress. There is a consistent decrease in the mean kink-pair
formation enthalpy with carbon content.

The kink-pair formation enthalpy in an e�ective carbon concentration can be seen
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to decrease with increasing carbon content. At concentrations greater than 20 appm,
the hard core is stabilised.

Line-tension simulations of the transition from a carbon-stabilised hard-core, to
an adjacent carbon-stabilised hard core were performed. It was found that the string
method would move the initial and final images to minima which were o�set from
the actual hard core positions, as these were positions which minimised the Peierls
potential, while the dislocation core could still be close to carbon. These positions
were related to the interpolated site positions, which were between the true trap-
sites, which are not physical. With increasing concentration, the kink-pair formation
enthalpies larger, from 0.7 ≠ 1.5 eV. As the cores settled in fictitious positions, the
results from these simulations were not included in this thesis.

Line-tension calculations of the kink-pair formation of a dislocation moving from
the stabilised hard core to an adjacent hard-core position, using a di�erent methodol-
ogy for carbon-dislocation interaction energies in the limit of slow glide, are necessary
to ascertain the kink-pair formation enthalpy at higher carbon contents. We expect,
as was seen in self-consistent calculations of the kink-pair formation enthalpy in hy-
drogen [238], that the trend will be reversed: the kink-pair formation enthalpy will
increase with carbon content, once the hard core has been stabilised, as observed in
the calculations performed in the previous paragraph.

One can see the e�ect that these mean enthalpies have on the kink-pair nucleation
rate. Using the results of the kink-pair formation enthalpy from the canonical-d tight-
binding model, and using equations (5.14) and (5.13) we have the rates as shown in
table 5.7. The rate enhancement factor is not included here as the concentration term
is taken into account in the kink-pair formation calculation itself.

cnom [appm] �d(T = 320K) [s≠1] v̄d(T = 320K) [Ås≠1]
10 8.7 20.4
20 2881.8 6753.1

Table 5.7: Kink-pair nucleation rate in an environment of carbon using the results of the
canonical d-band model, from equations (5.14) and (5.13).

Allowing carbon to equilibriate between trap sites during kink-pair formation, we
see a large enhancement to the kink pair nucleation rate, increasing dislocation veloc-
ity. Discussion of these results are left for section 5.3.7.1.
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5.3.7 Di�usion Barriers

EAM calculations of the di�usion barriers of carbon close to the easy core have shown
a decrease in barrier height from 0.87eV for bulk di�usion, to 0.2eV around the dis-
location core [56]. The lowering of the di�usion barrier around the dislocation line is
crucial to the validity of dislocation-assisted carbon migration. As will be shown in
section 5.3.7.1, carbon is only able to keep up with screw dislocations at temperatures
≥ 300K, if the di�usion barrier is lowered below ≥ 0.7 eV. However, the predictive
power of the EAM potential used to obtain these barriers is limited. The Mendelev
EAM potential is unable to reproduce: the 2D Peierls potential, which is double-
humped, instead of single-humped [116]; the metastable hard core structure, which
exhibits a spontaneous reconstruction to the hard core from the easy core and, the
binding energies of carbon close to the dislocation core—being half that found in Ven-
telon and this work [232, 246]. These discrepancies are likely due to the inherent lack
of quantum mechanical bonding information included in the EAM description, which
seems necessary for an accurate description of energetics close to the dislocation core
in iron. As such, it remains to be seen if the di�usion barriers, and consequent di�u-
sion rates obtained from this EAM potential are faithful, when compared to quantum
methods, such as DFT and tight-binding.

As seen in figure 5.9, at moderate dislocation densities, we expect all dislocations
to be decorated with carbon, and be of hard-core type. As such, it is important to
ascertain the di�usion barriers of carbon around the hard core, as it is the core we
expect to find most commonly in steels. From this, we can ascertain if there exists
a high-mobility zone around dislocations in bcc iron, validating the EAM results of
Nematollahi and the Fe-C potential of Becquart [56, 246], in addition to providing a
mechanism as to how carbon can travel with dislocations.

The di�usion barriers of carbon around the hard core from tight-binding can be
seen in figure 5.22. As found in DFT di�usion barrier calculations of carbon in iron
[240], the barrier for carbon displaced by a single lattice parameter is double-humped,
which corresponds to carbon travelling through an intermediate octahedral site, which
is of the same energy as the initial and final sites. Only one of these humps is shown in
figure 5.22, as they are identical. The bulk di�usion barrier obtained agrees very well
with DFT calculations. One obtains a value of 0.82 eV, compared to 0.87 eV found
by Jiang and Carter [240]. As such one may expect that the actual energy barriers
energies found below may be lower than from what one may expect from DFT.

The di�usion coe�cient prefactor calculated by finding the attempt frequency from
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the normal modes of the Hessian of all first neighbour atoms to the carbon in the
initial and transition states and using the standard equations (5.11) and (5.12). The
predicted value of the di�usion coe�cient prefactor Dtbe bulk

0 = 6.07 ◊ 10≠7 m2 s≠1 in
bulk di�usion lies close to the DFT value and the average experimental value, with
values of DDFT bulk

0 = 1.44◊10≠7 m2 s≠1 and DExp. bulk
0 = 1.67◊10≠7 m2 s≠1 [240, 254].

Note, the average experimental value varies over several orders of magnitude.
The discrepancy between DFT and tight-binding for the di�usion prefactor may

arise from the size of the supercell used (a 250 atom cell was used in tight-binding
compared to 125 atoms in DFT) and the construction of the Hessian: Jiang and
Carter constructed a rather small Hessian which only pertained to the three atom
system of carbon and the two iron atoms which were between the initial and final
octahedral sites, rather than including the e�ect of the first nearest neighbours of
carbon in each image of the transition path considered. As carbon produces a large
tetragonal distortion of bcc Fe octahedral sites, it is expected that the first nearest
neighbours would all have a sizeable e�ect on the vibrational frequencies and the mode
of vibration associated with transition, which would thereby modify the value of � and
the di�usion coe�cient prefactor. For completeness, using the same method of Hessian
construction as Jiang and Carter, one obtains Dtbe bulk JC

0 = 7.44◊10≠8 m2 s≠1, which
is roughly half that of the DFT calculated value.

The migration barriers around the hard dislocation core vary. One finds that the
migration energy barriers are significantly lower around the hard core compared to
the bulk value of 0.82 eV, however, they are not all around 0.2 eV as calculations of
di�usion around the easy core by Nematollahi suggest: the barriers vary from 0.2≠1.8
eV. One finds that the lowest energy barrier is that found by the transition of the H4
site to the H3 site, which results in an energy barrier of 0.2 eV.

Considering the H1 to H2 transition, one finds a large barrier of 1.8 eV. This
high barrier can partially be attributed to the constraint of keeping the core atoms
in the top and bottom layer fixed in the Z direction during the saddle point search.
As seen in section 5.3.3, performing relaxations of carbon-dislocation systems within
a quadrupolar array, with the same tight-binding model, reduced the binding energy
of the H1 site by 0.4 eV.
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Fig. 5.22: Left: energy barriers for carbon migration around a static hard-core dislocation.
The bulk migration barrier was calculated using tight-binding for comparison.
Many barriers around the hard dislocation core are reduced compared to that of
the bulk, with some being higher due to the constraints imposed on some core
atoms during relaxation. Right: Paths of migration, where the saddle points
are denoted by large markers, where the colormap gives the migration barrier
relative to the first site.

Transition Ea [eV] ‹ú [THz]
Bulk æ Bulk 0.817 44.19
H1 æ H2 1.790 24.58
H2 æ H1 1.180 30.01
H3 æ H4 0.347 20.77
H4 æ H3 0.197 4.39
H4 æ H5 0.484 48.52
H5 æ H4 0.576 49.85
H5 æ H5 1.016 26.25
H2 æ H2 0.589 36.03
H2 æ H7 0.460 27.15
H7 æ H2 0.588 6.07
H3 æ H7 0.418 30.07
H7 æ H3 0.776 29.67

Table 5.8: Table of energy barriers, with the value of ‹
ú, the attempt frequency calculated

as in Vineyard [109] from tight binding.

From the resultant paths, one can see potential mechanisms for carbon to keep up
with the dislocation. At equilibrium around 300K, a screw dislocation is in a hard
core configuration, with carbon segregated to binding sites around the core. Applying
a shear stress such that the dislocation moves along the X = È ¯211Í direction, the
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dislocation will move to the next hard core site, which is stabilised by the carbon
atoms at the H2 site. Assuming only barriers below 0.6 eV are able to be activated, as
the velocity of carbon is an order of magnitude greater than that of the dislocation,
as seen in figure 5.23 at T = 300 K, then we have the following mechanisms.

Considering sites ahead of the dislocation, before the dislocation moves, we have
a H7 site which is occupied, which is likely due to its large binding energy of 0.82
eV. Once the dislocation has moved, assuming all carbon remains in place during
dislocation movement, it becomes a H2 site. The carbon in the H2 site can freely
di�use to the new H7 site immediately ahead, as the H2 æ H7 barrier is 0.46 eV. This
is probable as the binding energy of the H7 site is higher than that of the H2 site,
and there is likely not a carbon in the new H7 site due to the lower binding energy
of carbon as we go out from the core. The binding energy of carbon at a distance
of 3b distance is around ¥ 0.4 eV, assuming the parameterised Lorentzian curve in
figure 5.11 is accurate. As we assume carbon stays in place during the transition of
the dislocation from one hard core site to the next, and taking into account that the
maximum concentration of the H2 site (of Eb = 0.698 eV) was around 0.22 at 1000
appm and 300K, as found by the Ising model incorporating carbon repulsion of Lüthi
[249], one can safely assume that the concentration of carbon in the newly minted H7
site would be lower. The sites previously H3, H4 and H5 will become new H2 sites,
which can di�use by the same mechanism, to the new H7 site.

Considering sites parallel to dislocation motion, the H3 site will become a new
H5 site, which can take the transition path H5 ¡ H4 ¡ H3 æ H7. This carbon is
marginally more likely to stay in the new H3 site than the H5 site, and so the cycle
could repeat upon further motion of the dislocation. For H4 and H5 sites we see that
they can di�use by H3 æ H4 æ H5, where these carbon atoms will now stay behind
the dislocation due to the large barrier of the H5 æ H5 transition.

For sites behind the dislocation, we find that the H1 site becomes H2. Carbon is
able to redistribute itself between the H7 and adjacent H2 site. The H2 site becomes
H7, and that the H7 æ H2 transition is possible, yet less likely to occur due to the
tendency for carbon to stay in the sites of the highest binding energy.

In some particular site-transitions, the preferred path of carbon is to go through
slightly deformed, metastable, octahedral-like sites. These can be seen in the transi-
tions of the H2-H2, H7-H3 transitions.
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5.3.7.1 Comparison of velocities of carbon and dislocations by thermal
activation.

We can calculate and compare the velocities of carbon undergoing di�usion and dislo-
cations undergoing kink-pair formation using information from literature, and from the
migration barriers around the core, as detailed below. A figure showing the calculation
for a range of temperatures can be seen in figure 5.23.

The average velocity associated with a process undergoing thermal activation of
a barrier is given by v̄ = da� , where da is the distance between the the initial and
final states of the barrier and � = ‹0 exp{(≠Ea/kBT )} is the jump rate at a given
temperature over an activation barrier Ea. For dislocations in bcc we have dd =
a

Ò
2/3 = 2.34Å, the jump distance between Peierls valleys, and for kink-pair formation

and dC = 1.435Å, the distance between octahedral sites which carbon can jump to.

Fig. 5.23: Average velocity of dislocations moving by kink-pair formation compared to the
velocity of carbon di�usion at various temperatures and migration barriers. With
a migration barrier smaller than 0.6 eV, carbon is able to move with dislocations.
The e�ect of the rate enhancement factors were negligible on the log velocity, as
such, they were omitted for clarity.

The experimental di�usion coe�cient prefactor of carbon in bcc Fe has been cal-
culated as DC

0 = 1.67 ◊ 10≠7m2s≠1 [240, 254]. The attempt frequency is related to
the di�usion coe�cient prefactor by ‹0 = 6D0/a2 [241, 255], which gives the attempt
frequency of carbon as ‹C

0 = 1.21 ◊ 1013s≠1 [56]. Given that the migration energy
barrier of carbon in bulk bcc Fe is EC

m bulk = 0.87eV from DFT calculations, rate of
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transition for carbon at T = 300 K is �C = ‹C
0 exp

Ó
≠EC

m bulk/kBT
Ô

= 2.95 ◊ 10≠2s≠1,
resulting in a velocity of vC = 4.23 ◊ 10≠2Ås≠1.

From the experimental rate of stable kink-pair nucleation in pure iron as �d =
81s≠1 from the work of Caillard [253], we can estimate the attempt frequency ‹0

d =
0.99 ◊ 108s≠1 using the experimental kink-pair formation enthalpy at 33 MPa Hk =
0.595 eV as in Itakura et al. [233]. This gives the velocity, as vd = dd�d(Hk, 300) =
2.0Ås≠1.

This shows that in the bulk, carbon cannot be assumed to move with the disloca-
tion, as the velocity of carbon is less than that of kink-pair formation.

However, with lower carbon migration barriers in the vicinity of screw dislocations,
carbon is able to be dragged along with the dislocation during glide. Assuming only
carbon barriers below 0.6 eV can be activated at 300K, and that the attempt frequen-
cies range from 6–30 THz from table 5.8, one finds the average velocity of carbon
ranges from vC = 6.0◊102 – 3.0◊103Ås≠1. The lower bound of the carbon velocity is
much greater than that of dislocations undergoing thermally-activated movement, as
such we can assume that in the high-mobility zone that carbon is able to move with
dislocations.

One can determine an upper bound to the average screw dislocation velocity in an
environment of carbon, by the plotting of the dislocation velocities with the kink-pair
formation enthalpies found in equilibrium, as seen in figure 5.21. The correspond-
ing equilibrium dislocation velocities seen in figure 5.23, do not account for the self-
consistency of the kink-pair formation enthalpy and the average dislocation velocity.
Applying self-consistency is necessary, as with an increase in dislocation velocity, there
is a reduction in the occupation of trap sites, which in-turn increases the kink-pair
formation enthalpy, reducing the velocity from the original value. The average velocity
of the screw dislocation at 20 appm C—which gives the lowest kink-pair formation
enthalpy, resulting in the highest velocity—represents an upper bound to dislocation
velocity modified by the carbon environment, as seen in figure 5.23. This upper bound
is assumed to be reasonably accurate in the operating temperature range of 310-360K,
despite the kink-pair formation enthalpy only being sampled at 320K. Future work
would be to improve on these results by adding in self-consistency, with extended
sampling over the operating temperature range.

The timescale of carbon redistribution with dislocation movement remains negligi-
ble as long as the kink-pair formation enthalpy with carbon HC

k (‡) is greater than the
migration barrier energy in high mobility zone [77]: Hk(‡)≠�HC

k (‡) > Em
C [77]. Using
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value of Em
C = 0.6 eV, one obtains a critical shear of ‡U

c
≥ 25MPa; using the smallest

barrier of Em
C = 0.2 eV, we can obtain an upper critical stress ‡U

c
≥ 210MPa, above

which carbon cannot enhance dislocation mobility. These are approximate bounds.
Strain has been shown to increase the binding energy of solute sites by the easy core
[56], and it is uncertain how shear strains will a�ect the migration barriers of carbon
around the hard screw dislocation.

5.4 Discussion
The Peierls potential is reproduced well by tight-binding. The change in core energy
agrees well with the calculated change of dislocation core energies of the in-situ Fe
straining experiments of Caillard [253], despite these simulations being performed at
0K, using the ferromagnetic ground state of iron during dislocation relaxations. For a
Peierls potential more reminiscent of iron at finite temperature, one could have given
a more thorough treatment of magnetism, performing multiple dislocation relaxations
using the non-collinear disordered local moment approximation to handle paramag-
netism, as was achieved by Casillas and Ventelon [256]. Their calculations showed that
the energy di�erence between the hard and easy cores is lowered to 26±20meV/b, from
40meV/b. The error bars are too large to confirm the hypothesis that the Peierls po-
tential is significantly di�erent, and the tight-binding results coincidentally fall exactly
into the middle of their range. As such, the resultant Peierls potential from ferromag-
netic calculations within tight-binding was deemed suitable for the line-tension model.

We see a reduction in the kink-pair formation enthalpy of pure iron in tight-binding,
by 0.15eV compared to DFT, due to the smaller overall Peierls potential in both the
sd and d tight-binding models. This would increase the rate of kink nucleation in
kMC models, causing a higher overall dislocation velocity. We do not expect this
discrepancy will significantly change the principal mechanisms observed, or results
obtained, from kMC simulations.

As in Lüthi [249], carbon interactions were found to be vital in understanding how
screw dislocations move in steels, due to the spontaneous reconstruction of the pure
iron ground state (easy core) upon introduction of carbon. From the large binding
energy of the H1 site, one would expect a hard core with carbon in a prismatic site
as the ground state configuration for pinned dislocations. In normal operating tem-
peratures of the bearings, one expects all dislocations to be hard cores saturated with
carbon in most of the Hj sites, as seen in the concentration analysis. In ferrite that

169



Dislocation-carbon interactions in Fe-C

has just transformed, assuming a C concentration of 0.6 wt% as seen in martensite,
we expect similar behaviour to the 1000 appm case as seen in figure 5.9.

In the context of dislocation-assisted carbon migration, with su�cient contact
stress, dislocations in their hard core ground state will be forced to move along the X =
È2̄11Í direction along a {110} plane, the elementary slip plane for screw dislocations
in Fe [253]. This results in the hard core reconstructing to an easy core. In the limit
of rapid glide, the prismatic carbon will stay in-place, becoming an E1 site. A drag
force now acts to impede motion of the dislocation, due to the binding of the carbon
in the E1 site. Progression of dislocation glide results in further reconstruction of
the dislocation core to hard and easy states, with the original carbon being situated
in H2, E6 and H3 sites, relative to the dislocation centre. From this reasoning, the
Lorentzian which parameterised the carbon interaction was fit to the H1, E1, H2, E6
and H3 sites, as seen in figure 5.11. As the dislocation moves, there is a significant
drag force acting on the dislocation, which decreases the further the dislocation moves
from carbon. As seen from the line-tension equilibrium results of straight dislocations,
figure 5.18, right, the energy of the straight segments increase greatly due to this drag
force.

However, due to the reduced barriers for carbon migration within the vicinity of a
dislocation, as shown by the explicit calculation of di�usion barriers, there can be an
average velocity of carbon orders of magnitude greater than that of screw dislocations,
so carbon is indeed very much able to keep up with the dislocation in normal operating
temperature conditions. The migration barriers key to carbon keeping up with dislo-
cations are the H2 ¡ H7 and H3 ¡ H5 barriers. Assuming that the stress does not
hinder carbon migration barriers significantly, the limit of slow glide applies during op-
eration, where carbon is able to keep up with the dislocation and equilibriate between
sites. It is found that the kink-pair formation enthalpy decreases significantly up to
the critical concentration of 20 appm at which the dislocation becomes a hard core;
and the velocity of the dislocation will increase due to the rate enhancement from the
ability of carbon to equilibriate with the sites around the dislocation from the reduced
migration barriers. Increasing the concentration of carbon further increases the kink-
pair formation enthalpy, as seen in hydrogen. In reality, the actual rate enhancement
is dependent on the amount of carbon which can equilibriate, which itself is a function
of dislocation velocity. As such, in future SCkMC simulations, one will be able to find
the dislocation velocity and kink-pair formation enthalpy in a self-consistent matter,
allowing for accurate simulation of carbon drag by dislocations.
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Within the context of the softening e�ect of carbon in ferrite, as seen in the tem-
perature dependence of the flow stress [16, 48], one sees that the origin of the softening
e�ect may be due to the activation of carbon di�usion, which decreases the kink-pair
formation enthalpy. The softening e�ect is found in the dependence of flow stress
150 to 300K. Comparing this with the screw dislocation velocities in figure 5.23, one
sees that di�usion barriers which are < 0.6 eV can be activated in this range, which
give a comparable velocity to dislocations which are in the lower range of dislocation
velocities seen here. The increased activation of these barriers causes softening by
the enhancement of kink-pair formation. The hardening e�ect of carbon > 300K has
been seen to be attributed to the inversion of the screw/edge mobility ratio, as seen
in in-situ straining experiments [48].

5.5 Future work
Using the kink-pair formation enthalpies and the binding energies of carbon to screw
dislocations, one can proceed with self-consistent kinetic Monte Carlo simulations of
dislocation glide in an environment of carbon to understand how dislocations move
carbon under applied stress, in di�erent temperature and nominal carbon concentra-
tion regimes.

It would be of interest to pursue atomistic calculations of carbon bound to edge
dislocations. DFT/elastic dipole tensor calculations by Maugis et al. [257], show
under compressive stress, carbon di�usivity is enhanced. This was also seen in the
work of Simpson with hydrogen [54]. Pipe di�usion along edge dislocations could
therefore be an important aspect to consider in carbon transport, in addition to the
higher mobility of edge dislocations in bcc iron. As such, edge dislocations could
be quite important within the mechanism of dislocation-assisted carbon migration.
Furthermore, the e�ect of stress on the migration barriers of carbon around the screw
cores is yet to be determined.

Ising and Monte Carlo models of intersite carbon interactions have been performed
using the results of DFT carbon-dislocation binding energies [249]. These calculations
only considered the hard core, with carbon binding sites of the H1 prismatic site
and a H2 site, (which they name P and O(4) respectively). First neighbour C-C
interactions were taken into account, both along the dislocation line and between
carbon sites. Using the tight-binding calculations as detailed in section 5.2.3, one can
easily apply and extend this analysis to consider more binding sites around the hard
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core, and observe stable carbon distributions around the easy core. From these models,
one could calculate the kink-pair formation enthalpy in an environment of multiple
carbons within the line-tension model explicitly accounting for the long-range ordering
exhibited by carbon.

5.5.1 Modification of occupancies in SCkMC due to di�usion
barriers

To model the solute atmosphere around a dislocation in an environment of carbon,
which is allowed to di�use, we can use a discrete di�usion model, as detailed in Yoshi-
naga [258]. One could use this to extend the line-tension model and the SCkMC model
and estimate the amount of carbon dragged by the dislocation [56].

Using the carbon migration barriers, and attempt frequencies around the disloca-
tion core, one can determine the evolution of carbon concentration with time. Nema-
tollahi et al. [56] extended this model to include the e�ect of changes in occupancy
upon dislocation movement.

The total change in occupancy can be described by the equation

ˆ‰i

ˆt
=

4ÿ

j=1

;
‰j(1 ≠ ‰i)‹iæj

0 exp
ÓË

≠Eiæj

a /kBT
ÈÔ

≠‰i(1 ≠ ‰j)‹jæi

0 exp
ÓË

≠Ejæi

a /kBT
ÈÔ<

+ v̄disl

a/2 [‰j+ ≠ ‰i], (5.16)

where ‰i, is the occupancy of a particular carbon site, Ejæi

a , is the migration
barrier of carbon from site j to site i, ‹0 is the associated attempt frequency. The
summation is over the four nearest sites available for carbon to di�use to. The last
term in equation (5.16), is a convection term, allowing concentrations to change upon
a dislocation moving with average velocity v̄disl. We use the convention of a dislocation
moving along the positive x-axis; as such, ‰j+ is the occupation of a site to the right
of site i the dislocation, which is biased to move towards the ‰i upon dislocation
movement, and similarly site i will move the the j≠ site, to the left of the dislocation.

In the paper of Gong et al. [238], the di�usion model has a di�erent form. The oc-
cupancy of carbon is taken as a proportion of the di�erence between the limiting cases
of dislocation movement: slow dislocation movement, where carbon is able to equilib-
riate with the dislocation, and fast dislocation movement, where carbon occupancies
are fixed. This has the form of
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ˆ‰i

ˆt
= v̄disl

ˆ‰i

ˆx
= (‰e

i
(x) ≠ ‰i(x, v̄)) ‹solute escape

0 exp{≠Ei(r)/kBT}, (5.17)

where ‰e

i
is the equilibrium occupancy of site i, ‰i is the true occupancy of the

site, which is solved for, ‹solute escape
0 is the attempt frequency for carbon to escape the

solute atmosphere, and Ei(r) is the binding energy of carbon to the ith site, which has
been parameterised by a dependence on the distance from the dislocation core r. This
equation can be solved self-consistently with

v̄disl(Hk) = h‹0
k exp (≠Hk(CC, ‡, v̄disl)/kBT ) , (5.18)

where h = a
Ò

2/3 is the distance between two Peierls valleys, ‹0
k = 2.31◊109s≠1 is the

attempt frequency for stable kink-pair formation, which is fit to obtain the measured
dislocation velocity in pure Fe, and Hk is the kink-pair formation enthalpy at a given
carbon concentration, stress and average dislocation velocity.

One could extend the SCkMC model to include the discrete di�usion model of
carbon into di�erent sites around the dislocation, using the attempt frequencies of the
various di�usion barriers calculated. The steps being

1. Assume an initial Hk

2. Calculate the the dislocation velocity v̄disl(Hk) using equation (5.18).

3. Solve for the occupancies of the sites in equation (5.16).

4. Calculate the kink-pair formation enthalpy Hk(CC, ‡, v̄disl) using the string/NEB
method.

5.6 Conclusion
Dislocation-assisted carbon migration is thought to be a viable mechanism by which
martensite decays to form DER regions—areas composed mostly of ferrite interspersed
in a martensitic matrix—which enhances failure risk by RCF. There is dispute over
where excess carbon from the martensitic matrix finds itself upon transformation to
ferrite, of much lower carbon solubility. The current leading mechanism suggests
carbon segregates to pre-existing carbides, yet experimental results show in the late
stages of DER formation, pre-existing carbides are partially dissolved in areas of highly
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localized plasticity, implying segregation of carbon to dislocations. As such, a thorough
investigation of carbon-dislocation interactions is vital to understanding how DER
initially forms and progresses.

In this chapter, the preliminary work for an SCkMC model, which can be used
to investigate carbon can migrate with dislocations has been achieved: tight-binding
atomistic calculations were used to obtain carbon-dislocation binding energies for both
screw core configurations, the 2d Peierls potential, and line-tension parameters, which
were necessary for a line-tension model of a dislocation, from which one could obtain
the kink-pair formation enthalpy of screw dislocations in the limit of fast glide in
the dilute carbon limit, and in the limit of slow glide at equilibrium concentrations,
thereby simulating carbon migration. Tight-binding calculations were also used to find
carbon migration barriers around hard core, which were greatly reduced, as in the easy
core, thereby giving weight to a mechanism for dislocation-assisted carbon migration
by carbon di�using with the dislocation in the direction of dislocation motion.

The Peierls potential found by tight-binding gave characteristics comparable to
both EAM/DFT results. Carbon distribution around the easy and hard cores were
found to di�er significantly, with the largest binding energy being found by carbon
being situated in a prismatic site in the hard core. Carbon within 3Å of the easy core
caused reconstruction to the hard core, with carbon in a prismatic site. The carbon-
dislocation binding energies decrease with distance, and are in good agreement with
the literature.

Equilibrium carbon concentration calculations around the hard/easy cores at nor-
mal operating temperatures and dislocation densities suggest that all dislocations are
of hard core type with carbon situated in an H1/prismatic site, with reconstruction
of all easy core dislocations to hard core, resulting in all dislocations being pinned.
Therefore in bearing steels, one predicts that all the cores are saturated, showing that
dislocations can indeed act as a reservoir for carbon during DER development.

One can determine what happens in the two limiting cases of dislocation velocity,
where dislocation speed is much greater than that of carbon di�usion, and where
dislocation speed is slow compared to carbon di�usion.

In the former limit, the limit of fast glide, if there is su�cient stress, a dislocation
can escape the hard core, equilibrium ground state—where it is pinned by carbon—and
move to adjacent easy/hard core positions. Throughout the transition, it experiences
a large drag force from the strong binding energy of prismatic carbon to the dislo-
cation. Once it has escaped the environment of carbon, one finds, by calculation of

174



Dislocation-carbon interactions in Fe-C

the kink-pair formation enthalpy, that if a single carbon is found ahead of the dis-
location, then the solute-enhanced localised plasticity e�ect, due to the reduction of
the kink-pair formation enthalpy, is surprisingly subtle, due to the long range of its
interaction. There is a kink-trapping e�ect which hinders the migration of kinks along
the dislocation line, which is found to be much stronger for the hard core than the
easy core.

Allowing for carbon to equilibriate between trap sites, in the limit of slow glide
relative to carbon migration, we see the average kink-pair formation enthalpy decreases
significantly upon stabilisation of the hard core, with an expected increase in the
kink-pair formation enthalpy for carbon concentrations greater than 20 appm. A self-
consistent method is necessary to obtain more accurate estimates of the kink-pair
formation enthalpy and average dislocation velocity with carbon concentration.

Through di�usion barrier calculations of carbon around the hard core, one confirms
that there is indeed su�cient reduction of some migration barriers in the vicinity of
the hard core which allows for carbon to move with dislocations in normal operating
temperatures, proving that a dislocation-assisted carbon migration mechanism is a
feasible mechanism for DER formation. Carbon is able to stay ahead of the disloca-
tion due to the H2 æ H7 transition, which allows for a consistent, albeit reasonably
subtle, carbon-enhanced localised plasticity e�ect. Other sites around and behind the
dislocation also allow for carbon to stay with the dislocation: the H2 ¡ H7 and H3
¡ H5 transitions.

The reduction of these barriers explain the softening e�ect of carbon between
150 to 300K, due to the activation of the lower carbon di�usion barriers, allowing for
a reduction in the kink-pair formation enthalpy.

From these results, one has demonstrated the applicability of simple tight-binding
models to describe and validate fundamental mechanisms in iron, with the limits of
scalability and feasible computational time being shown by the dislocation/di�usion
barrier calculations. This work allows for the construction of an advanced SCkMC
model, which simulates the movement of dislocations by kink-pair formation, and
carbon di�usion by a discrete di�usion model. The dislocation velocity and con-
centration of carbon arising from the discrete di�usion model—explicitly simulating
carbon migration—would be solved self-consistently, giving rise to well-informed pre-
dictions of how and where carbon is situated during thermally-activated movement of
dislocations at di�erent nominal concentrations, stresses and temperatures. These can
provide predictions of flow stress and dislocation configurations with carbon content.
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Chapter 6

Conclusion

In this thesis, an exhibition of what can be achieved with simple tight-binding models,
in terms of both scale and transferability, has been shown through an investigation of
defects in metals.

The parameterisations achieved in this thesis push the limits of transferability,
allowing for many novel simulations with multiple phases. The models were fit with-
out the need for vast quantities of ab-inito data—as would be necessary in modern
data-driven approaches—while explicitly describing quantum mechanical bonding and
phenomena, unlike empirical descriptions.

Scalability of the models was exhibited by investigation of fundamental hardening
mechanisms of oxygen in titanium, and dislocation-assisted carbon migration/carbon-
induced softening in iron. This necessitated large simulation cells such that one could
obtain accurate core structure resolution in reaction to solutes. The simulations were
at the limits of scale in tight-binding, both in terms of: size, where ≥ 1000 atoms
were used to simulate dislocations in titanium; and in time, where more than 106 core
hours of time were necessary to ascertain the di�usion barriers of carbon around the
hard screw dislocation core in iron.

The central points pertaining to titanium are as follows.

• The first self-consistent polarisable-ion tight-binding model which can describe
bulk Ti along with TiO2, TiH2, H2 and H2O was successfully created.

• This model gave cohesive energies of rutile TiO2 and fluorite TiH2 in agree-
ment with DFT, in addition to titanium cohesive energies commensurate with
experiment, allowing for comparable solution energies of H and O in bulk Ti to
DFT.
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• The first tight-binding simulations of water on titanium found that the model
was stable under NVT molecular dynamics. Water was found to dissociate on
the titanium surface, forming a H≠ ion which penetrated the metal and an OH
group which adsorbed on the surface.

• The morphology of “-surfaces in hcp Ti was in accordance with DFT, with the
d-model showing the correct energetic ordering of stable stacking faults for the
basal and prismatic planes.

• Investigation of dislocations in titanium gave dissociations of the ÈaÍ screw dis-
location in agreement with experimental observations of screw dislocation glide
and some DFT core structures. This is the first modern tight-binding model to
do so. Furthermore, the Peierls stress on the prismatic plane was in agreement
with experiment.

• Oxygen-screw dislocation interactions were found to be repulsive, causing the
generation of jogs on the dislocation line, as found in DFT and experimental
observations. These jogs explain the origin of the dramatic increase in yield
strength with oxygen content in titanium due to the pinning of dislocations.

• The prediction of a new mechanism of jog formation was seen in tight-binding,
due to oxygen interacting with the dislocation out of the prismatic glide plane,
which is commensurate with ab-initio calculations. This could explain the preva-
lence of slip planarity with oxygen content more satisfactorily than the interstitial
shu�ing mechanism.

• Estimation of oxygen-jog interactions show it is preferable for oxygen to bind to
the jogs upon formation, inhibiting jog-dipole annihilation and further pinning
the dislocation by bound oxygen. This can be important in the modelling of creep
in titanium, which is theorised to be controlled by jogged screw dislocations.

• The glide of screw dislocations in titanium is likely governed by a locking-
unlocking mechanism, where a sessile pyramidal core is the ground-state, and
glide occurs by transition to a glissile metastable prismatic core. But errors
apparent in core energies from atomistic calculations still leave the true ground-
state core structure in question.

The main results pertaining to iron are as follows.
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• Investigation of carbon in bcc iron found a reconstruction of the easy screw
core to a hard screw core, in agreement with DFT. This has not been shown
in empirical potentials, demonstrating the necessity of a quantum mechanical
description of bonding for dislocation-solute interactions in iron.

• A thermodynamical mean-field model showed that most cores in iron, for a wide
range of operating temperatures, are the hard core, even in high-purity iron.

• A line-tension model parameterised on atomistic data found increases in carbon
content caused a reduction in the kink-pair formation enthalpy, in the limit of
slow glide.

• Migration barriers of carbon around the hard screw dislocation core were found
to be reduced, resulting in the discovery of di�usion mechanisms allowing carbon
to keep up with dislocations upon glide.

• The average velocity of carbon around the dislocation, in the range of bearing
operation temperatures, was shown to be greater than the average dislocation
velocity due to these reduced barriers.

• This validates the feasibility of a dislocation-assisted carbon migration mecha-
nism to explain dark-etching region formation in bearing steels. This e�ect could
further explain the origin of the softening e�ect of carbon in iron.

• The data generated from these atomistic simulations can form the basis of an
SCkMC model of dislocation glide, incorporating carbon di�usion. From such
a model, one can ascertain the regimes of temperature, stress and carbon con-
centration in which carbon can keep up with dislocations, and the dislocation
networks which result.

There is scope for more research with the models created/used here. The com-
bined Ti, TiO2, TiH2, H2O and H2 model has many applications. The interface
structure between titanium and its oxide and hydride is of interest. The structure
of water on the surface of titanium/titanium dioxide/titanium hydride can be dis-
cerned. Electrochemical simulations involving titanium electrodes could be achieved
using “hairy probes” [259]. The plasticity of titanium could be investigated further,
with the exploration of edge dislocation-oxygen interactions, which would be useful in
creep modelling. In addition, di�usion barriers around the core can be determined, to
see if they are reduced in the vicinity of screw/edge cores, allowing for kMC models of
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dislocation glide/di�usion. Novel stress-corrosion cracking simulations of titanium by
oxygen can be attempted. With application of an O(N) bond-order potential scheme,
scalability can be greatly enhanced, allowing for simulations of grain/twin boundaries,
dislocation loops and dislocation pile-ups in titanium.

With the iron-carbon model, the e�ect carbon and its pinning of edge dislocations
at higher temperatures in iron [48] could be explored by calculation of edge dislocation-
carbon binding energies. The Peierls potential for edge dislocations can be determined
allowing for line-tension modelling, as has been achieved here for screw dislocations.
The SCkMC can be extended with the explicit inclusion of attempt frequencies and
di�usion barriers of carbon around dislocations, as detailed.
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Appendix A

Estimation of jog width from
oxygen-induced cross-slip

One has approximated here that the jogs on the screw dislocation are straight and
of no width. This is not the case in reality. There will be a width to the jogs of a
few atomic spacings, and if the width is very wide, then the elastic analysis of oxygen
binding to a straight edge segment becomes less applicable to the case of jogs on a
screw dislocation. We can approximately calculate the width of the jogs to determine if
the approximation of straightness is reasonable, using a line-tension model. Assuming
a constant line-tension with angular variation, we can determine the width of the jogs
from the exact same analysis as that for the kink width from a line-tension model [7]

w ¥ b

Û
T

2EP
, (A.1)

where w is the kink width, T is the line-tension and EP is the value of the Peierls
potential, which is dependent on the glide plane. The line tension T can be estimated
from the dislocation line energy T = Eelastic + Ecore [260], it can also be estimated
by calculation finite di�erence methods in atomistic simulation [76]. The elastic term
can be estimated by use of the anisotropic prelogarithmic factors, and the standard
equation Eelastic = biKijbj ln R/rc. The core radius, rc was taken to be the dislocation
half-width as above. The radius, R of the dislocation was arbitrarily taken to be 12b,
as in Rodney et al. [260]. The Peierls potential was simply taken to be the stable
stacking fault energy for that particular plane, which is therefore underestimated by a
neglect of the dislocation core energy, as would be apparent in the true Peierls energy
landscape of the dislocation. The core energy in the above equation for T is not able
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Estimation of jog width from oxygen-induced cross-slip

to be accounted for without explicit atomistic simulation of the dislocation, and is a
large source of error in the estimation of T , as evidenced in the paper of Rodney et
al. [7, 260]. As the Peierls potential on the basal plane is much higher than that on
the prismatic plane, as evidenced by unstable basal cores in DFT calculations [131],
one may expect that the width of the kink on the basal plane is much smaller than
on the fi1 plane. However one finds, using purely an elastic analysis, that widths are,
from the sd-model, wsd≠TB

basal = 3.10b, wsd≠TB
fi1 = 1.50b and wsd≠TB

pris. = 3.33b, and from
Curtin et al. DFT [166], one finds wDFT

basal = 2.47b, wDFT
fi1 = 2.56b and wDFT

pris. = 3.16b.
These widths are very narrow compared to that of screw dislocations in iron which are
around 10b [76, 107], but comparable to those in aluminium [260], estimated from EAM
potentials. Therefore the approximation of a straight jog/kink is not unreasonable, and
the binding energy analysis by elasticity becomes more accurate as oxygen undergoes
migration events to the jog, until it migrates a distance of w/2 to the centre of the
jog, which is straight.
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Appendix B

Regularisation of interaction
energy in quadrupolar array

In isotropic elasticity, the elastic energy of a single dislocation dipole in an infinite
lattice is given by

EŒ
el = µb2

4fi
ln

3
r

rc

4

The contribution from periodic images to the correction is

Eimg = Eel(a, ci, rc) ≠ EŒ
el (a, rc),

"Ghost" dipoles are introduced to account for the conditional convergence of the
sum at ±–b and ±—b, where – = — = 0.5. We define Edg(R) as the interaction energy
of a ghost dislocation and a dipole at R anisotropic elasticity equations as shown in
[210].

Defining,

Edd(R) = µb2

2fi
ln |R|2

|R + a| · |R ≠ a| ,

we obtain,
Eimg = 1

2
ÿ

R
[Edd(R) ≠ Edg(R)] ≠ 1

2Edg(R = 0),

which can be subtracted from the total energy as given from atomistic calculations,
for a regularised interaction energy.
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Appendix C

Zero-point energy calculation

After relaxation of the C-dislocation system, a 3x3 Hessian matrix is constructed by
taking the numerical derivative of forces observed on the carbon atom after displace-
ment by ±0.015Å in each of the X, Y and Z directions. The three atoms surrounding
the core on the first and third layers were again fixed in Z coordinate. The zero-point
energy is given by

Ez = 1
2

3ÿ

i=1

h

2fi

Ò
ki/mC,

where ki are the eigenvalues of the Hessian and mC is the mass of carbon.
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Appendix D

Smooth mapping of sites in
equilibrium line-tension model

To approximate the position of trap sites upon dislocation movement, the $x$-coordinate
of the dislocation core position, Px, was used to obtain the trap site positions around
the core.

Focussing on one half of the the path of a dislocation between peierls valleys, the
segment of a dislocation going between an easy core to hard core, one can define
forward and backwards paths, a dislocation travelling from the easy core towards the
hard core, and vice versa. The trap sites at the end points are well-defined: when
Px = P easy

x
= 0, the trap sites are exactly those found upon relaxation of the easy

core, similarly, when Px = P hard
x

= a
Ô

2/(2
Ô

3) = d, the trap sites are those found
upon relaxation of the hard core. These positions can be seen in section 5.3.3.

One can define trap site mappings for these forward and backwards paths: for
an easy core site to a hard core site, E–

j
æ H—

k
, and from hard core to easy core

H“

l
æ E”

m
, where j, k, l, m denote a particular trap site position, with labels defined

in section 5.3.3 and –, —, “, ” are labels which denote which of the six possible sectors
the site belongs to. These six sectors arise from the combination of the three-fold
rotational and reflection symmetry found in the crystal—thus one need only have
the trap sites for one sector and apply the appropriate rotation and/or reflection to
obtain the necessary trap site position at the given endpoint. These mappings are
not symmetric for the forward and backwards paths, e.g. are many easy core trap
sites which map to the H1 site, due to its strong binding energy, as found in atomistic
simulations of reconstruction, but, quite clearly, these mappings

For a given mapping, one can linearly interpolate between the two positions to give
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Smooth mapping of sites in equilibrium line-tension model

a trap site position for an intermediate dislocation core.

P trap forward
j,k

(Px) =
3

1 ≠ Px

d

4
E–

j
+ Px

d
H—

k
,

P trap backward
l,m

(Px) =
3

1 ≠ Px

d

4
E”

m
+ Px

d
H“

l
.

To define trap site mappings for core positions at Px > d, one need only swap
the forward for the backwards path, due to reflection symmetry about Px = d, thus
allowing for well defined trap sites for all core positions between the peierls valleys.
This can be seen in the kink-pair formation of the canonical-d tight-binding model in
figure D.1.

Fig. D.1: Positions of trap sites around dislocation segments upon kink-pair formation
at a nominal carbon concentration of 30 appm. Path only shown to the hard
core to demonstrate smooth mapping of trap sites going from easy to hard core.
Equilibrium occupancies shown by coloured circles.
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